Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37896719

RESUMEN

Magnetoelectric (ME)-based magnetometers have garnered much attention as they boast ultra-low-power systems with a small form factor and limit of detection in the tens of picotesla. The highly sensitive and low-power electric readout from the ME sensor makes them attractive for near DC and low-frequency AC magnetic fields as platforms for continuous magnetic signature monitoring. Among multiple configurations of the current ME magnetic sensors, most rely on exploiting the mechanically resonant characteristics of a released ME microelectromechanical system (MEMS) in a heterostructure device. Through optimizing the resonant device configuration, we design and fabricate a fixed-fixed resonant beam structure with high isolation compared to previous designs operating at ~800 nW of power comprised of piezoelectric aluminum nitride (AlN) and magnetostrictive (Co1-xFex)-based thin films that are less susceptible to vibration while providing similar characteristics to ME-MEMS cantilever devices. In this new design of double-clamped magnetoelectric MEMS resonators, we have also utilized thin films of a new iron-cobalt-hafnium alloy (Fe0.5Co0.5)0.92Hf0.08 that provides a low-stress, high magnetostrictive material with an amorphous crystalline structure and ultra-low magnetocrystalline anisotropy. Together, the improvements of this sensor design yield a magnetic field sensitivity of 125 Hz/mT when released in a compressive state. The overall detection limit of these sensors using an electric field drive and readout are presented, and noise sources are discussed. Based on these results, design parameters for future ME MEMS field sensors are discussed.

2.
Adv Mater ; 34(7): e2106827, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34773926

RESUMEN

Electrical switching of ferroelectric domains and subsequent domain wall motion promotes strong piezoelectric activity, however, light scatters at refractive index discontinuities such as those found at domain wall boundaries. Thus, simultaneously achieving large piezoelectric effect and high optical transmissivity is generally deemed infeasible. Here, it is demonstrated that the ferroelectric domains in perovskite Pb(In1/2 Nb1/2 )O3 -Pb(Mg1/3 Nb2/3 )O3 -PbTiO3 domain-engineered crystals can be manipulated by electrical field and mechanical stress to reversibly and repeatably, with small hysteresis, transform the opaque polydomain structure into a highly transparent monodomain state. This control of optical properties can be achieved at very low electric fields (less than 1.5 kV cm-1 ) and is accompanied by a large (>10 000 pm V-1 ) piezoelectric coefficient that is superior to linear state-of-the-art materials by a factor of three or more. The coexistence of tunable optical transmissivity and high piezoelectricity paves the way for a new class of photonic devices.

3.
Phys Rev Lett ; 122(15): 157201, 2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31050510

RESUMEN

The unconventional electronic ground state of Sr_{3}IrRuO_{7} is explored via resonant x-ray scattering techniques and angle-resolved photoemission measurements. As the Ru content approaches x=0.5 in Sr_{3}(Ir_{1-x}Ru_{x})_{2}O_{7}, intermediate to the J_{eff}=1/2 Mott state in Sr_{3}Ir_{2}O_{7} and the quantum critical metal in Sr_{3}Ru_{2}O_{7}, a thermodynamically distinct metallic state emerges. The electronic structure of this intermediate phase lacks coherent quasiparticles, and charge transport exhibits a linear temperature dependence over a wide range of temperatures. Spin dynamics associated with the long-range antiferromagnetism of this phase show nearly local, overdamped magnetic excitations and an anomalously large energy scale of 200 meV-an energy far in excess of exchange energies present within either the Sr_{3}Ir_{2}O_{7} or Sr_{3}Ru_{2}O_{7} solid-solution end points. Overdamped quasiparticle dynamics driven by strong spin-charge coupling are proposed to explain the incoherent spectral features of the strange metal state in Sr_{3}IrRuO_{7}.

4.
Nat Commun ; 7: 10852, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26927313

RESUMEN

Recent developments in high-temperature superconductivity highlight a generic tendency of the cuprates to develop competing electronic (charge) supermodulations. While coupled with the lattice and showing different characteristics in different materials, these supermodulations themselves are generally conceived to be quasi-two-dimensional, residing mainly in individual CuO2 planes, and poorly correlated along the c axis. Here we observed with resonant elastic X-ray scattering a distinct type of electronic supermodulation in YBa2Cu3O(7-x) (YBCO) thin films grown epitaxially on La0.7Ca0.3MnO3 (LCMO). This supermodulation has a periodicity nearly commensurate with four lattice constants in-plane, eight out of plane, with long correlation lengths in three dimensions. It sets in far above the superconducting transition temperature and competes with superconductivity below this temperature for electronic states predominantly in the CuO2 plane. Our finding sheds light on the nature of charge ordering in cuprates as well as a reported long-range proximity effect between superconductivity and ferromagnetism in YBCO/LCMO heterostructures.


Asunto(s)
Técnicas Electroquímicas , Elementos de la Serie de los Lantanoides/química , Cobre/química , Conductividad Eléctrica , Fenómenos Magnéticos , Difracción de Rayos X , Itrio/química
5.
Nat Mater ; 14(6): 577-82, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25915033

RESUMEN

Negative compressibility is a sign of thermodynamic instability of open or non-equilibrium systems. In quantum materials consisting of multiple mutually coupled subsystems, the compressibility of one subsystem can be negative if it is countered by positive compressibility of the others. Manifestations of this effect have so far been limited to low-dimensional dilute electron systems. Here, we present evidence from angle-resolved photoemission spectroscopy (ARPES) for negative electronic compressibility (NEC) in the quasi-three-dimensional (3D) spin-orbit correlated metal (Sr1-xLax)3Ir2O7. Increased electron filling accompanies an anomalous decrease of the chemical potential, as indicated by the overall movement of the deep valence bands. Such anomaly, suggestive of NEC, is shown to be primarily driven by the lowering in energy of the conduction band as the correlated bandgap reduces. Our finding points to a distinct pathway towards an uncharted territory of NEC featuring bulk correlated metals with unique potential for applications in low-power nanoelectronics and novel metamaterials.

6.
Sci Rep ; 5: 8533, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25704850

RESUMEN

We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr(1-x)La(x))3Ir2O7. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected "Fermi arcs", reminiscent of those reported recently in surface electron-doped Sr2IrO4. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA