Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 258: 121803, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795548

RESUMEN

Nano zero-valent metals (nZVMs) have been extensively utilized for decades in the reductive remediation of groundwater contaminated with chlorinated organic compounds, owing to their robust reducing capabilities, simple application, and cost-effectiveness. Nevertheless, there remains a dearth of information regarding the efficient reductive defluorination of linear or branched per- and polyfluoroalkyl substances (PFASs) using nZVMs as reductants, largely due to the absence of appropriate catalysts. In this work, various soluble porphyrin ligands [[meso­tetra(4-carboxyphenyl)porphyrinato]cobalt(III)]Cl·7H2O (CoTCPP), [[meso­tetra(4-sulfonatophenyl) porphyrinato]cobalt(III)]·9H2O (CoTPPS), and [[meso­tetra(4-N-methylpyridyl) porphyrinato]cobalt(II)](I)4·4H2O (CoTMpyP) have been explored for defluorination of PFASs in the presence of the nZn0 as reductant. Among these, the cationic CoTMpyP showed best defluorination efficiencies for br-perfluorooctane sulfonate (PFOS) (94%), br-perfluorooctanoic acid (PFOA) (89%), and 3,7-Perfluorodecanoic acid (PFDA) (60%) after 1 day at 70 °C. The defluorination rate constant of this system (CoTMpyP-nZn0) is 88-164 times higher than the VB12-nZn0 system for the investigated br-PFASs. The CoTMpyP-nZn0 also performed effectively at room temperature (55% for br-PFOS, 55% for br-PFOA and 25% for 3,7-PFDA after 1day), demonstrating the great potential of in-situ application. The effect of various solubilizing substituents, electron transfer flow and corresponding PFASs defluorination pathways in the CoTMpyP-nZn0 system were investigated by both experiments and density functional theory (DFT) calculations. SYNOPSIS: Due to the unavailability of active catalysts, available information on reductive remediation of PFAS by zero-valent metals (ZVMs) is still inadequate. This study explores the effective defluorination of various branched PFASs using soluble porphyrin-ZVM systems and offers a systematic approach for designing the next generation of catalysts for PFAS remediation.


Asunto(s)
Zinc , Zinc/química , Porfirinas/química , Fluorocarburos/química , Metaloporfirinas/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción
2.
Chemosphere ; 321: 138109, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36787844

RESUMEN

The presence of per- and poly-fluoroalkyl substances (PFASs) in water is of global concern due to their high stability and toxicity even at very low concentrations. There are several technologies for the remediation of PFASs, but most of them are inadequate either due to limited effectiveness, high cost, or production of a large amount of sludge. Electrochemical oxidation (EO) technology shows great potential for large-scale application in the degradation of PFASs due to its simple procedure, low loading of chemicals, and least amount of waste. Here, we have reviewed the recent progress in EO methods for PFAS degradation, focusing on the last 10 years, to explore an efficient, cost-effective, and environmentally benign remediation technology. The effects of important parameters (e.g., anode material, current density, solution pH, electrolyte, plate distance, and electrical connector type) are summarized and evaluated. Also, the energy consumption, the consequence of different PFASs functional groups, and water matrices are discussed to provide an insight that is pivotal for developing new EO materials and technologies. The proposed degradation pathways of shorter-chain PFAS by-products during EO of PFAS are also discussed.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Tecnología , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...