Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochimie ; 184: 116-124, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33662439

RESUMEN

Manganese porphyrins are well-known protectors against the deleterious effects of pro-oxidant species such as superoxide ions and hydrogen peroxide. The present study investigated the antioxidant cytochrome c-like activities of Mn(III)TMPyP [meso-tetrakis (4-N-methyl pyridinium) porphyrin] against superoxide ion and hydrogen peroxide that remained unexplored for this porphyrin. The association of TMPyP with a model of the inner mitochondrial membrane, cardiolipin (CL)-containing liposomes, shifted +30 mV vs. NHE (normal hydrogen electrode) redox potential of the Mn(II)/Mn(III) redox couple. In CL-containing liposomes, Mn(III)TMPyP was reduced by superoxide ions and recycled by Fe(III)cytochrome c to the oxidized form. Similarly, isolated rat liver mitoplasts added to a sample of Mn(II)TMPyP promoted immediate porphyrin reoxidation by electron transfer to the respiratory chain. These results show that Mn(III)TMPyP can act as an additional pool of Fe(III)cytochrome c capable of transferring electrons that escape from the IV complex back into the respiratory chain. Unlike Fe(II)cytochrome c, Mn(II)TMPyP was not efficient for hydrogen peroxide clearance. Therefore, by reducing cytochrome c, Mn(II)TMPyP can indirectly contribute to hydrogen peroxide elimination.


Asunto(s)
Antioxidantes/química , Citocromos c/química , Mitocondrias Hepáticas/enzimología , Membranas Mitocondriales/enzimología , Porfirinas/química , Animales , Ratas , Ratas Wistar
2.
Front Chem ; 7: 930, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32039150

RESUMEN

Ca2+-overload contributes to the oxidation of mitochondrial membrane lipids and associated events such as the permeability transition pore (MPTP) opening. Numerous experimental studies about the Ca2+/cardiolipin (CL) interaction are reported in the literature, but there are few studies in conjunction with theoretical approaches based on ab initio calculations. In the present study, the lipid fraction of the inner mitochondrial membrane was modeled as POPC/CL large unilamellar vesicles (LUVs). POPC/CL and, comparatively, POPC, and CL LUVs were challenged by singlet molecular oxygen using the anionic porphyrin TPPS4 as a photosensitizer and by free radicals produced by Fe2+-citrate. Calcium ion favored both types of lipid oxidation in a lipid composition-dependent manner. In membranes containing predominantly or exclusively POPC, Ca2+ increased the oxidation at later reaction times while the oxidation of CL membranes was exacerbated at the early times of reaction. Considering that Ca2+ interaction affects the lipid structure and packing, density functional theory (DFT) calculations were applied to the Ca2+ association with totally and partially protonated and deprotonated CL, in the presence of water. The interaction of totally and partially protonated CL head groups with Ca2+ decreased the intramolecular P-P distance and increased the hydrophobic volume of the acyl chains. Consistently with the theoretically predicted effect of Ca2+ on CL, in the absence of pro-oxidants, giant unilamellar vesicles (GUVs) challenged by Ca2+ formed buds and many internal vesicles. Therefore, Ca2+ induces changes in CL packing and increases the susceptibility of CL to the oxidation promoted by free radicals and excited species.

3.
Front Chem ; 4: 13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27066476

RESUMEN

The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from 15 days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After 2 months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the gold surface. Therefore, the cysteine side chain of albumins is important for the colloidal stabilization of GNPs rather than as the reducing agent for the synthesis. Despite the presence of more reactive gold species at more acidic pH values, i.e., below 6.0, in these conditions the loss of native albumin structure impaired GNP synthesis. Alkaline pH values (9-12) combined the unfavorable conditions of denaturated protein structure with less reactive gold species. Therefore, an optimal condition for the synthesis of GNPs using serum albumins involves more reactive gold salt species combined with a reducing and negatively charged form of the protein, all favored at pH 6-7.

4.
ACS Omega ; 1(3): 424-434, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31457138

RESUMEN

In the present study, alkaline peptides AAAXCX (X = lysine or arginine residues) were designed based on the conserved motif of the enzyme thioredoxin and used for the synthesis of gold nanoparticles (GNPs) in the pH range of 2-11. These peptides were compared with free cysteine, the counterpart acidic peptides AAAECE and γ-ECG (glutathione), and the neutral peptide AAAACA. The objective was to investigate the effect of the amino acids neighboring a cysteine residue on the pH-dependent synthesis of gold nanocrystals. Kohn-Sham density functional theory (KS-DFT) calculations indicated an increase in the reducing capacity of AAAKCK favored by the successive deprotonation of their ionizable groups at increasing pH values. Experimentally, it was observed that gold speciation and the peptide structure also have a strong influence on the synthesis and stabilization of GNPs. AAAKCK produced GNPs at room temperature, in the whole investigated pH range. By contrast, alkaline pH was the best condition for the synthesis of GNP assisted by the AAARCR peptide. The acidic peptides produced GNPs only in the presence of polyethylene glycol, and the synthesis using AAAECE and γ-ECG also required heating. The ionization state of AAAKCK had a strong influence on the preferential growth of the GNPs. Therefore, pH had a remarkable effect on the synthesis, kinetics, size, shape, and polydispersity of GNPs produced using AAAKCK. The AAAKCK peptide produced anisotropic decahedral and platelike nanocrystals at acidic pH values and spherical GNPs at alkaline pH values. Both alkaline peptides were also efficient capping agents for GNPs, but they produced a significant difference in the zeta potential, probably because of different orientations on the gold surface.

5.
PLoS One ; 10(8): e0136554, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26312997

RESUMEN

We characterized the peroxidase mechanism of recombinant rat brain cytoglobin (Cygb) challenged by hydrogen peroxide, tert-butylhydroperoxide and by cumene hydroperoxide. The peroxidase mechanism of Cygb is similar to that of myoglobin. Cygb challenged by hydrogen peroxide is converted to a Fe4+ oxoferryl π cation, which is converted to Fe4+ oxoferryl and tyrosyl radical detected by direct continuous wave-electron paramagnetic resonance and by 3,5-dibromo-4-nitrosobenzene sulfonate spin trapping. When organic peroxides are used as substrates at initial reaction times, and given an excess of peroxide present, the EPR signals of the corresponding peroxyl radicals precede those of the direct tyrosyl radical. This result is consistent with the use of peroxide as a reducing agent for the recycling of Cygb high-valence species. Furthermore, we found that the Cygb oxidation by peroxides leads to the formation of amyloid fibrils. This result suggests that Cygb possibly participates in the development of degenerative diseases; our findings also support the possible biological role of Cygb related to peroxidase activity.


Asunto(s)
Amiloide/química , Globinas/química , Peróxido de Hidrógeno/química , Peroxidasa/química , Amiloide/metabolismo , Animales , Bencenosulfonatos/química , Citoglobina , Espectroscopía de Resonancia por Spin del Electrón , Globinas/metabolismo , Hierro/química , Hierro/metabolismo , Compuestos Nitrosos/química , Oxidación-Reducción , Peroxidasa/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...