Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 31(9): 2767-2782, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37481701

RESUMEN

The AAV9 gene therapy vector presented in this study is safe in mice and non-human primates and highly efficacious without causing overexpression toxicity, a major challenge for clinical translation of Rett syndrome gene therapy vectors to date. Our team designed a new truncated methyl-CpG-binding protein 2 (MECP2) promoter allowing widespread expression of MECP2 in mice and non-human primates after a single injection into the cerebrospinal fluid without causing overexpression symptoms up to 18 months after injection. Additionally, this new vector is highly efficacious at lower doses compared with previous constructs as demonstrated in extensive efficacy studies performed by two independent laboratories in two different Rett syndrome mouse models carrying either a knockout or one of the most frequent human mutations of Mecp2. Overall, data from this multicenter study highlight the efficacy and safety of this gene therapy construct, making it a promising candidate for first-in-human studies to treat Rett syndrome.


Asunto(s)
Síndrome de Rett , Humanos , Ratones , Animales , Síndrome de Rett/genética , Síndrome de Rett/terapia , Síndrome de Rett/metabolismo , Primates/genética , Terapia Genética , Mutación
2.
Gene Ther ; 30(6): 487-502, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36631545

RESUMEN

Fabry disease is an X-linked lysosomal storage disorder caused by loss of alpha-galactosidase A (α-Gal A) activity and is characterized by progressive accumulation of glycosphingolipids in multiple cells and tissues. FLT190, an investigational gene therapy, is currently being evaluated in a Phase 1/2 clinical trial in patients with Fabry disease (NCT04040049). FLT190 consists of a potent, synthetic capsid (AAVS3) containing an expression cassette with a codon-optimized human GLA cDNA under the control of a liver-specific promoter FRE1 (AAV2/S3-FRE1-GLAco). For mouse studies FLT190 genome was pseudotyped with AAV8 for efficient transduction. Preclinical studies in a murine model of Fabry disease (Gla-deficient mice), and non-human primates (NHPs) showed dose-dependent increases in plasma α-Gal A with steady-state observed 2 weeks following a single intravenous dose. In Fabry mice, AAV8-FLT190 treatment resulted in clearance of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) in plasma, urine, kidney, and heart; electron microscopy analyses confirmed reductions in storage inclusion bodies in kidney and heart. In NHPs, α-Gal A expression was consistent with the levels of hGLA mRNA in liver, and no FLT190-related toxicities or adverse events were observed. Taken together, these studies demonstrate preclinical proof-of-concept of liver-directed gene therapy with FLT190 for the treatment of Fabry disease.


Asunto(s)
Enfermedad de Fabry , Terapia Genética , Animales , Humanos , Ratones , Células Cultivadas , Enfermedad de Fabry/genética , Enfermedad de Fabry/terapia , Fibroblastos , Vectores Genéticos , Hígado/metabolismo , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
3.
Cereb Cortex ; 30(6): 3731-3743, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32080705

RESUMEN

Neuronal activity initiates transcriptional programs that shape long-term changes in plasticity. Although neuron subtypes differ in their plasticity response, most activity-dependent transcription factors (TFs) are broadly expressed across neuron subtypes and brain regions. Thus, how region- and neuronal subtype-specific plasticity are established on the transcriptional level remains poorly understood. We report that in young adult (i.e., 6-8 weeks old) mice, the developmental TF SOX11 is induced in neurons within 6 h either by electroconvulsive stimulation or by exploration of a novel environment. Strikingly, SOX11 induction was restricted to the dentate gyrus (DG) of the hippocampus. In the novel environment paradigm, SOX11 was observed in a subset of c-FOS expressing neurons (ca. 15%); whereas around 75% of SOX11+ DG granule neurons were c-FOS+, indicating that SOX11 was induced in an activity-dependent fashion in a subset of neurons. Environmental enrichment or virus-mediated overexpression of SOX11 enhanced the excitability of DG granule cells and downregulated the expression of different potassium channel subunits, whereas conditional Sox11/4 knock-out mice presented the opposite phenotype. We propose that Sox11 is regulated in an activity-dependent fashion, which is specific to the DG, and speculate that activity-dependent Sox11 expression may participate in the modulation of DG neuron plasticity.


Asunto(s)
Giro Dentado/metabolismo , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica , Plasticidad Neuronal/genética , Neuronas/metabolismo , Factores de Transcripción SOXC/genética , Animales , Electrochoque , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Transcripción SOXC/metabolismo
4.
Exp Neurol ; 297: 101-109, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28797631

RESUMEN

Heat shock protein beta-1 (HSPB1), is a ubiquitously expressed, multifunctional protein chaperone. Mutations in HSPB1 result in the development of a late-onset, distal hereditary motor neuropathy type II (dHMN) and axonal Charcot-Marie Tooth disease with sensory involvement (CMT2F). The functional consequences of HSPB1 mutations associated with hereditary neuropathy are unknown. HSPB1 also displays neuroprotective properties in many neuronal disease models, including the motor neuron disease amyotrophic lateral sclerosis (ALS). HSPB1 is upregulated in SOD1-ALS animal models during disease progression, predominately in glial cells. Glial cells are known to contribute to motor neuron loss in ALS through a non-cell autonomous mechanism. In this study, we examined the non-cell autonomous role of wild type and mutant HSPB1 in an astrocyte-motor neuron co-culture model system of ALS. Astrocyte-specific overexpression of wild type HSPB1 was sufficient to attenuate SOD1(G93A) astrocyte-mediated toxicity in motor neurons, whereas, overexpression of mutHSPB1 failed to ameliorate motor neuron toxicity. Expression of a phosphomimetic HSPB1 mutant in SOD1(G93A) astrocytes also reduced toxicity to motor neurons, suggesting that phosphorylation may contribute to HSPB1 mediated-neuroprotection. These data provide evidence that astrocytic HSPB1 expression may play a central role in motor neuron health and maintenance.


Asunto(s)
Astrocitos/fisiología , Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Choque Térmico/genética , Neuronas Motoras/fisiología , Mutación/genética , Proteínas de Neoplasias/genética , Neuroglía/fisiología , Animales , Astrocitos/patología , Supervivencia Celular/fisiología , Enfermedad de Charcot-Marie-Tooth/patología , Técnicas de Cocultivo , Humanos , Ratones , Ratones Transgénicos , Chaperonas Moleculares , Neuronas Motoras/patología , Neuroglía/patología
5.
Proc Natl Acad Sci U S A ; 113(42): E6496-E6505, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27688759

RESUMEN

Oligodendrocytes have recently been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS). Here we show that, in vitro, mutant superoxide dismutase 1 (SOD1) mouse oligodendrocytes induce WT motor neuron (MN) hyperexcitability and death. Moreover, we efficiently derived human oligodendrocytes from a large number of controls and patients with sporadic and familial ALS, using two different reprogramming methods. All ALS oligodendrocyte lines induced MN death through conditioned medium (CM) and in coculture. CM-mediated MN death was associated with decreased lactate production and release, whereas toxicity in coculture was lactate-independent, demonstrating that MN survival is mediated not only by soluble factors. Remarkably, human SOD1 shRNA treatment resulted in MN rescue in both mouse and human cultures when knockdown was achieved in progenitor cells, whereas it was ineffective in differentiated oligodendrocytes. In fact, early SOD1 knockdown rescued lactate impairment and cell toxicity in all lines tested, with the exclusion of samples carrying chromosome 9 ORF 72 (C9orf72) repeat expansions. These did not respond to SOD1 knockdown nor did they show lactate release impairment. Our data indicate that SOD1 is directly or indirectly involved in ALS oligodendrocyte pathology and suggest that in this cell type, some damage might be irreversible. In addition, we demonstrate that patients with C9ORF72 represent an independent patient group that might not respond to the same treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/metabolismo , Oligodendroglía/metabolismo , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Apoptosis , Biomarcadores , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Comunicación Celular , Muerte Celular , Diferenciación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ácido Láctico/metabolismo , Ratones , Ratones Transgénicos , Mutación , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/citología , Superóxido Dismutasa-1/metabolismo
6.
Nat Med ; 22(4): 397-403, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26928464

RESUMEN

Astrocytes isolated from individuals with amyotrophic lateral sclerosis (ALS) are toxic to motor neurons (MNs) and play a non-cell autonomous role in disease pathogenesis. The mechanisms underlying the susceptibility of MNs to cell death remain unclear. Here we report that astrocytes derived from either mice bearing mutations in genes associated with ALS or human subjects with ALS reduce the expression of major histocompatibility complex class I (MHCI) molecules on MNs; reduced MHCI expression makes these MNs susceptible to astrocyte-induced cell death. Increasing MHCI expression on MNs increases survival and motor performance in a mouse model of ALS and protects MNs against astrocyte toxicity. Overexpression of a single MHCI molecule, HLA-F, protects human MNs from ALS astrocyte-mediated toxicity, whereas knockdown of its receptor, the killer cell immunoglobulin-like receptor KIR3DL2, on human astrocytes results in enhanced MN death. Thus, our data indicate that, in ALS, loss of MHCI expression on MNs renders them more vulnerable to astrocyte-mediated toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Antígenos de Histocompatibilidad Clase I/biosíntesis , Neuronas Motoras/patología , Receptores KIR3DL2/genética , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Cadáver , Muerte Celular/genética , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Mutación , Superóxido Dismutasa/genética
7.
J Neurosci ; 35(3): 1274-90, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25609641

RESUMEN

Adult progenitor cells proliferate in the acutely injured spinal cord and their progeny differentiate into new oligodendrocytes (OLs) that remyelinate spared axons. Whether this endogenous repair continues beyond the first week postinjury (wpi), however, is unknown. Identifying the duration of this response is essential for guiding therapies targeting improved recovery from spinal cord injury (SCI) by enhancing OL survival and/or remyelination. Here, we used two PDGFRα-reporter mouse lines and rats injected with a GFP-retrovirus to assess progenitor fate through 80 d after injury. Surprisingly, new OLs were generated as late as 3 months after injury and their processes ensheathed axons near and distal to the lesion, colocalized with MBP, and abutted Caspr+ profiles, suggesting newly formed myelin. Semithin sections confirmed stereotypical thin OL remyelination and few bare axons at 10 wpi, indicating that demyelination is relatively rare. Astrocytes in chronic tissue expressed the pro-OL differentiation and survival factors CNTF and FGF-2. In addition, pSTAT3+ NG2 cells were present through at least 5 wpi, revealing active signaling of the Jak/STAT pathway in these cells. The progenitor cell fate genes Sox11, Hes5, Id2, Id4, BMP2, and BMP4 were dynamically regulated for at least 4 wpi. Collectively, these data verify that the chronically injured spinal cord is highly dynamic. Endogenous repair, including oligodendrogenesis and remyelination, continues for several months after SCI, potentially in response to growth factors and/or transcription factor changes. Identifying and understanding spontaneous repair processes such as these is important so that beneficial plasticity is not inadvertently interrupted and effort is not exerted to needlessly duplicate ongoing spontaneous repair.


Asunto(s)
Diferenciación Celular/fisiología , Enfermedades Desmielinizantes/fisiopatología , Regeneración Nerviosa/fisiología , Oligodendroglía/fisiología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Enfermedades Desmielinizantes/patología , Femenino , Masculino , Ratones , Oligodendroglía/citología , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/patología
8.
Neuron ; 81(5): 1009-1023, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24607225

RESUMEN

Neuroinflammation is one of the most striking hallmarks of amyotrophic lateral sclerosis (ALS). Nuclear factor-kappa B (NF-κB), a master regulator of inflammation, is upregulated in spinal cords of ALS patients and SOD1-G93A mice. In this study, we show that selective NF-κB inhibition in ALS astrocytes is not sufficient to rescue motor neuron (MN) death. However, the localization of NF-κB activity and subsequent deletion of NF-κB signaling in microglia rescued MNs from microglial-mediated death in vitro and extended survival in ALS mice by impairing proinflammatory microglial activation. Conversely, constitutive activation of NF-κB selectively in wild-type microglia induced gliosis and MN death in vitro and in vivo. Taken together, these data provide a mechanism by which microglia induce MN death in ALS and suggest a novel therapeutic target that can be modulated to slow the progression of ALS and possibly other neurodegenerative diseases by which microglial activation plays a role.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Muerte Celular/fisiología , Microglía/citología , Neuronas Motoras/citología , FN-kappa B/metabolismo , Factores de Edad , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/metabolismo , Comunicación Celular/fisiología , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos , Ratones Transgénicos , Microglía/metabolismo , Neuronas Motoras/metabolismo , FN-kappa B/antagonistas & inhibidores , Cultivo Primario de Células , Transducción de Señal/fisiología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
9.
Neuron ; 82(2): 334-49, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24656932

RESUMEN

The ocular motility disorder "Congenital fibrosis of the extraocular muscles type 1" (CFEOM1) results from heterozygous mutations altering the motor and third coiled-coil stalk of the anterograde kinesin, KIF21A. We demonstrate that Kif21a knockin mice harboring the most common human mutation develop CFEOM. The developing axons of the oculomotor nerve's superior division stall in the proximal nerve; the growth cones enlarge, extend excessive filopodia, and assume random trajectories. Inferior division axons reach the orbit but branch ectopically. We establish a gain-of-function mechanism and find that human motor or stalk mutations attenuate Kif21a autoinhibition, providing in vivo evidence for mammalian kinesin autoregulation. We identify Map1b as a Kif21a-interacting protein and report that Map1b⁻/⁻ mice develop CFEOM. The interaction between Kif21a and Map1b is likely to play a critical role in the pathogenesis of CFEOM1 and highlights a selective vulnerability of the developing oculomotor nerve to perturbations of the axon cytoskeleton.


Asunto(s)
Axones/patología , Enfermedades Hereditarias del Ojo/genética , Fibrosis/genética , Cinesinas/genética , Cinesinas/metabolismo , Mutación/genética , Trastornos de la Motilidad Ocular/genética , Nervio Oculomotor/patología , Factores de Edad , Animales , Animales Recién Nacidos , Axones/ultraestructura , Recuento de Células , Modelos Animales de Enfermedad , Embrión de Mamíferos , Enfermedades Hereditarias del Ojo/patología , Enfermedades Hereditarias del Ojo/fisiopatología , Movimientos Oculares/genética , Movimientos Oculares/fisiología , Fibrosis/patología , Fibrosis/fisiopatología , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Vías Nerviosas/ultraestructura , Trastornos de la Motilidad Ocular/patología , Trastornos de la Motilidad Ocular/fisiopatología , Nervio Oculomotor/ultraestructura
10.
Proc Natl Acad Sci U S A ; 111(2): 829-32, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24379375

RESUMEN

Amyotrophic lateral sclerosis (ALS) causes motor neuron degeneration, paralysis, and death. Accurate disease modeling, identifying disease mechanisms, and developing therapeutics is urgently needed. We previously reported motor neuron toxicity through postmortem ALS spinal cord-derived astrocytes. However, these cells can only be harvested after death, and their expansion is limited. We now report a rapid, highly reproducible method to convert adult human fibroblasts from living ALS patients to induced neuronal progenitor cells and subsequent differentiation into astrocytes (i-astrocytes). Non-cell autonomous toxicity to motor neurons is found following coculture of i-astrocytes from familial ALS patients with mutation in superoxide dismutase or hexanucleotide expansion in C9orf72 (ORF 72 on chromosome 9) the two most frequent causes of ALS. Remarkably, i-astrocytes from sporadic ALS patients are as toxic as those with causative mutations, suggesting a common mechanism. Easy production and expansion of i-astrocytes now enables rapid disease modeling and high-throughput drug screening to alleviate astrocyte-derived toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Astrocitos/citología , Desdiferenciación Celular/fisiología , Diferenciación Celular/fisiología , Fibroblastos/citología , Neuronas Motoras/patología , Células-Madre Neurales/citología , Análisis de Varianza , Astrocitos/metabolismo , Comunicación Celular , Técnicas de Cultivo de Célula , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Humanos , Modelos Biológicos , Neuronas Motoras/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Aging Cell ; 11(3): 542-52, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22404871

RESUMEN

Accumulating evidence suggests that adult hippocampal neurogenesis relies on the controlled and continued proliferation of neural progenitor cells (NPCs). With age, neurogenesis decreases through mechanisms that remain unclear but are believed to involve changes in the NPC microenvironment. Here, we provide evidence that NPC proliferation in the adult brain is in part regulated by astrocytes via Wnt signaling and that this cellular cross-talk is modified in the aging brain, leading to decreased proliferation of NPCs. Furthermore, we show that astrocytes regulate the NPC cell cycle by acting on the expression levels of survivin, a known mitotic regulator. Among cell cycle genes found down-regulated in aged NPCs, survivin was the only one that restored NPC proliferation in the aged brain. Our results provide a mechanism for the gradual loss of neurogenesis in the brain associated with aging and suggest that targeted modulation of survivin expression directly or through Wnt signaling could be used to stimulate adult neurogenesis.


Asunto(s)
Hipocampo/citología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Células-Madre Neurales/citología , Proteínas Represoras/metabolismo , Proteínas Wnt/metabolismo , Envejecimiento/fisiología , Animales , Astrocitos/citología , Astrocitos/metabolismo , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Hipocampo/metabolismo , Humanos , Ratones , Células-Madre Neurales/metabolismo , Transducción de Señal , Survivin , Vía de Señalización Wnt
13.
Nat Biotechnol ; 29(9): 824-8, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21832997

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, with astrocytes implicated as contributing substantially to motor neuron death in familial (F)ALS. However, the proposed role of astrocytes in the pathology of ALS derives in part from rodent models of FALS based upon dominant mutations within the superoxide dismutase 1 (SOD1) gene, which account for <2% of all ALS cases. Their role in sporadic (S)ALS, which affects >90% of ALS patients, remains to be established. Using astrocytes generated from postmortem tissue from both FALS and SALS patients, we show that astrocytes derived from both patient groups are similarly toxic to motor neurons. We also demonstrate that SOD1 is a viable target for SALS, as its knockdown significantly attenuates astrocyte-mediated toxicity toward motor neurons. Our data highlight astrocytes as a non-cell autonomous component in SALS and provide an in vitro model system to investigate common disease mechanisms and evaluate potential therapies for SALS and FALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Astrocitos/patología , Neuronas Motoras/patología , Esclerosis Amiotrófica Lateral/patología , Animales , Astrocitos/metabolismo , Biomarcadores , Diferenciación Celular , Línea Celular , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Mutación , Análisis de Secuencia de ADN , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
14.
Mol Ther ; 19(10): 1905-12, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21772256

RESUMEN

Stem cell-derived motor neurons (MNs) are increasingly utilized for modeling disease in vitro and for developing cellular replacement strategies for spinal cord injury and diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Human embryonic stem cell (hESC) differentiation into MNs, which involves retinoic acid (RA) and activation of the sonic hedgehog (SHH) pathway is inefficient and requires up to 60 days to develop MNs with electrophysiological properties. This prolonged differentiation process has hampered the use of hESCs, in particular for high-throughput screening. We evaluated the MN gene expression profile of RA/SHH-differentiated hESCs to identify rate-limiting factors involved in MN development. Based on this analysis, we developed an adenoviral gene delivery system encoding for MN inducing transcription factors: neurogenin 2 (Ngn2), islet-1 (Isl-1), and LIM/homeobox protein 3 (Lhx3). Strikingly, delivery of these factors induced functional MNs with mature electrophysiological properties, 11-days after gene delivery, with >60-70% efficiency from hESCs and human induced pluripotent stem cells (hiPSCs). This directed programming approach significantly reduces the time required to generate electrophysiologically-active MNs by approximately 30 days in comparison to conventional differentiation techniques. Our results further exemplify the potential to use transcriptional coding for rapid and efficient production of defined cell types from hESCs and hiPSCs.


Asunto(s)
Neuronas Motoras/citología , Células Madre Pluripotentes/patología , Factores de Transcripción/metabolismo , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Humanos , Neuronas Motoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
15.
PLoS One ; 4(9): e7044, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19763260

RESUMEN

BACKGROUND: Reprogramming human somatic cells to pluripotency represents a valuable resource for the development of in vitro based models for human disease and holds tremendous potential for deriving patient-specific pluripotent stem cells. Recently, mouse neural stem cells (NSCs) have been shown capable of reprogramming into a pluripotent state by forced expression of Oct3/4 and Klf4; however it has been unknown whether this same strategy could apply to human NSCs, which would result in more relevant pluripotent stem cells for modeling human disease. METHODOLOGY AND PRINCIPAL FINDINGS: Here, we show that OCT3/4 and KLF4 are indeed sufficient to induce pluripotency from human NSCs within a two week time frame and are molecularly indistinguishable from human ES cells. Furthermore, human NSC-derived pluripotent stem cells can differentiate into all three germ lineages both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: We propose that human NSCs represent an attractive source of cells for producing human iPS cells since they only require two factors, obviating the need for c-MYC, for induction into pluripotency. Thus, in vitro human disease models could be generated from iPS cells derived from human NSCs.


Asunto(s)
Lóbulo Frontal/embriología , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Neuronas/citología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre/citología , Diferenciación Celular , Linaje de la Célula , Células Germinativas/citología , Humanos , Cariotipificación , Factor 4 Similar a Kruppel , Microscopía Fluorescente/métodos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Neurobiol Dis ; 22(2): 302-11, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16442805

RESUMEN

Friedreich's ataxia (FRDA) is caused by reduction of frataxin levels to 5-35%. To better understand the biochemical sequelae of frataxin reduction, in absence of the confounding effects of neurodegeneration, we studied the gene expression profile of a mouse model expressing 25-36% of the normal frataxin levels, and not showing a detectable phenotype or neurodegenerative features. Despite having no overt phenotype, a clear microarray gene expression phenotype was observed. This phenotype followed the known regional susceptibility in this disease, most changes occurring in the spinal cord. Additionally, gene ontology analysis identified a clear mitochondrial component, consistent with previous findings. We were able to confirm a subset of changes in fibroblast cell lines from patients. The identification of a core set of genes changing early in the FRDA pathogenesis can be a useful tool in both clarifying the disease process and in evaluating new therapeutic strategies.


Asunto(s)
Sistema Nervioso Central/metabolismo , Ataxia de Friedreich/genética , Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de Unión a Hierro/genética , Degeneración Nerviosa/genética , Animales , Línea Celular , Sistema Nervioso Central/patología , Sistema Nervioso Central/fisiopatología , Modelos Animales de Enfermedad , Femenino , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/fisiopatología , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Médula Espinal/metabolismo , Médula Espinal/patología , Médula Espinal/fisiopatología , Frataxina
17.
FEBS Lett ; 572(1-3): 281-8, 2004 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-15304363

RESUMEN

Friedreich ataxia, the most common autosomal recessive ataxia, is caused by frataxin deficiency. Reduction of frataxin has been associated with iron accumulation and sensitivity to iron induced oxidative stress. To better understand the function of frataxin, transgenic mice (tgFxn) overexpressing human frataxin were generated. Iron metabolism parameters in tgFxn were normal and no signs of ataxia or other obvious abnormalities were observed, indicating that overexpression of frataxin in mouse is innocuous. Several hypotheses for frataxin function were evaluated in tgFxn mice. In particular, we observed that TgFxn mice show an altered response during hematopoietic differentiation, suggesting that frataxin may directly affect heme synthesis.


Asunto(s)
Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/genética , Animales , Cartilla de ADN , Recuento de Eritrocitos , Ataxia de Friedreich/sangre , Hematócrito , Hematopoyesis/genética , Humanos , Hierro/metabolismo , Ratones , Ratones Mutantes , Ratones Transgénicos , Reacción en Cadena de la Polimerasa , Transferrina/metabolismo , Frataxina
18.
Genomics ; 84(2): 361-73, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15233999

RESUMEN

Machado-Joseph disease (MJD) is a neurodegenerative disorder, caused by the expansion of the (CAG)n tract in the MJD gene. This encodes the protein ataxin-3, of unknown function. The mouse Mjd gene has a structure similar to that of its human counterpart and it also contains a TATA-less promoter. Its 5' flanking region contains conserved putative binding regions for transcription factors Sp1, USF, Arnt, Max, E47, and MyoD. Upon differentiation of P19 cells, the Mjd gene promoter is preferentially activated in endodermal and mesodermal derivatives, including cardiac and skeletal myocytes; and less so in neuronal precursors. Mouse ataxin-3 is ubiquitously expressed during embryonic development and in the adult, with strong expression in regions of the CNS affected in MJD. It is particularly abundant in all types of muscle and in ciliated epithelial cells, suggesting that it may be associated with the cytoskeleton and may have an important function in cell structure and/or motility.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas/genética , Región de Flanqueo 5'/genética , Secuencia de Aminoácidos , Animales , Ataxina-3 , Secuencia de Bases , Diferenciación Celular , Línea Celular , Clonación Molecular , ADN Complementario/genética , Embrión de Mamíferos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína MioD/genética , Proteína MioD/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares , Unión Proteica , Proteínas Represoras , Alineación de Secuencia , Factores de Transcripción
19.
Blood ; 103(7): 2847-9, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-14656877

RESUMEN

Genetic causes of hereditary hemochromatosis (HH) include mutations in the HFE gene, coding for a beta2-microglobulin (beta2m)-associated major histocompatibility complex class I-like protein. However, iron accumulation in patients with HH can be highly variable. Previously, analysis of beta2mRag1(-/-) double-deficient mice, lacking all beta2m-dependent molecules and lymphocytes, demonstrated increased iron accumulation in the pancreas and heart compared with beta2m single knock-out mice. To evaluate whether the observed phenotype in beta2mRag1(-/-) mice was due solely to the absence of Hfe or to other beta2m-dependent molecules, we generated HfeRag1(-/-) double-deficient mice. Our studies revealed that introduction of Rag1 deficiency in Hfe knock-out mice leads to heightened iron overload, mainly in the liver, whereas the heart and pancreas are relatively spared compared with beta2mRag1(-/-) mice. These results suggest that other beta2m-interacting protein(s) may be involved in iron regulation and that in the absence of functional Hfe molecules lymphocyte numbers may influence iron overload severity.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/genética , Proteínas de Homeodominio/genética , Hierro/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Mutación , Microglobulina beta-2/fisiología , Animales , Genes RAG-1 , Hemocromatosis/genética , Proteína de la Hemocromatosis , Homeostasis , Linfocitos/fisiología , Ratones , Ratones Noqueados , Miocardio/metabolismo , Páncreas/metabolismo , Microglobulina beta-2/deficiencia , Microglobulina beta-2/genética
20.
Cerebellum ; 2(2): 146-53, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12880182

RESUMEN

Friedreich ataxia (FRDA), the most common autosomal recessive inherited ataxic disorder, is the consequence of deficiency of the mitochondrial protein frataxin, typically caused by homozygous intronic GAA expansions in the corresponding gene. The yeast frataxin homologue (yfh1p) is required for cellular respiration. Yfh1p appears to regulate mitochondrial iron homeostasis and protect from free radical toxicity. Complete loss of frataxin in knockout mice leads to early embryonic lethality, indicating an important role for frataxin during development. Heterozygous littermates with partial frataxin deficiency are apparently healthy and have no obvious phenotype. Here we evaluate iron metabolism and sensitivity to dietary and parenteral iron loading in heterozygote frataxin knockout mice (Fx(+/-)). Iron concentrations in the liver, heart, pancreas and spleen, and cellular iron distribution patterns were compared between wild type and Fx(+/-) mice. Response to parenteral iron challenge was not different between Fx(+/-) mice and wild type littermates, while sporadic iron deposits were observed in the hearts of dietary iron-loaded Fx(+/-) mice. Finally, we evaluated the effect of partial frataxin deficiency on susceptibility to cardiac damage in the mouse model of hereditary hemochromatosis (HH), the Hfe knockout mice. HH, an iron overload disease, is one of the most frequent genetic diseases in populations of European origin. By breeding Hfe(-/-) with Fx(+/-) mice, we obtained compound mutant mice lacking both Hfe and one frataxin allele. Sparse iron deposits in areas of mild to moderate cardiac fibrosis were found in the majority of these mice. However, they did not develop any neurological symptoms. Our studies indicate an association between frataxin deficiency, iron deposits and cardiac fibrosis, but no obvious association between iron accumulation and neurodegeneration similar to FRDA could be detected in our model. In addition, these results suggest that frataxin mutations may have a modifier role in HH, that predisposes to cardiomyopathy.


Asunto(s)
Proteínas de Unión a Hierro/genética , Hierro/metabolismo , Animales , Modelos Animales de Enfermedad , Ataxia de Friedreich/genética , Hemocromatosis/genética , Hemocromatosis/metabolismo , Intrones , Deficiencias de Hierro , Proteínas de Unión a Hierro/metabolismo , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Valores de Referencia , Repeticiones de Trinucleótidos , Frataxina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA