Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Med ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379704

RESUMEN

Brain metastases (BMs) are the most common and among the deadliest brain tumors. Currently, there are no reliable predictors of BM development from primary cancer, which limits early intervention. Lung adenocarcinoma (LUAD) is the most common BM source and here we obtained 402 tumor and plasma samples from a large cohort of patients with LUAD with or without BM (n = 346). LUAD DNA methylation signatures were evaluated to build and validate an accurate model predicting BM development from LUAD, which was integrated with clinical factors to provide comprehensive patient-specific BM risk probabilities in a nomogram. Additionally, immune and cell interaction gene sets were differentially methylated at promoters in BM versus paired primary LUAD and had aligning dysregulation in the proteome. Immune cells were differentially abundant in BM versus LUAD. Finally, liquid biomarkers identified from methylated cell-free DNA sequenced in plasma were used to generate and validate accurate classifiers for early BM detection. Overall, LUAD methylomes can be leveraged to predict and noninvasively identify BM, moving toward improved patient outcomes with personalized treatment.

2.
Eur Thyroid J ; 12(6)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052158

RESUMEN

Objective: Nonautoimmune hyperthyroidism (NAH) is rare and occurs due to a constitutively activating thyroid stimulating hormone receptor (TSHR) mutation. In contrast to other thyroid nodules, no further evaluation for malignancy is recommended for hot thyroid nodules. In the first model for NAH in mice nearly all homozygous mice had developed papillary thyroid cancer by 12 months of age. Methods: To further evaluate these mice, whole exome sequencing and phosphoproteome analysis were employed in a further generation of mice to identify any other mutations potentially responsible and to identify the pathways involved in thyroid carcinoma development. Results: Only three genes (Nrg1, Rrs1, Rasal2) were mutated in all mice examined, none of which were known primary drivers of papillary thyroid cancer development. Wild-type and homozygous TSHR D633H knockin mice showed distinct phosphoproteome profiles with an enrichment of altered phosphosites found in ERK/mitogen-activated protein kinase (MAPK) signaling. Most importantly, phosphosites with known downstream effects included BRAF p.S766, which forms an inhibitory site: a decrease of phosphorylation at this site suggests an increase in MEK/ERK pathway activation. The decreased phosphorylation at BRAF p.S766 would suggest decreased AMP-activated protein kinase (AMPK) signaling, which is supported by the decreased phosphorylation of STIM1 p.S257, a downstream AMPK target. Conclusion: The modified phosphoproteome profile of the homozygous mice in combination with human literature suggests a potential signaling pathway from constitutive TSHR signaling and cAMP activation to the activation of ERK/MAPK signaling. This is the first time that a specific mechanism has been identified for a possible involvement of TSH signaling in thyroid carcinoma development.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Ratones , Humanos , Animales , Cáncer Papilar Tiroideo/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Receptores de Tirotropina/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal/genética , Neoplasias de la Tiroides/genética , Tirotropina/metabolismo
3.
Eur Thyroid J ; 12(6)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855416

RESUMEN

Objective: Nonautoimmune hyperthyroidism (NAH) is rare and occurs due to a constitutively activating thyroid stimulating hormone receptor (TSHR) mutation. In contrast to other thyroid nodules, no further evaluation for malignancy is recommended for hot thyroid nodules. In the first model for NAH in mice nearly all homozygous mice had developed papillary thyroid cancer by 12 months of age. Methods: To further evaluate these mice, whole exome sequencing and phosphoproteome analysis were employed in a further generation of mice to identify any other mutations potentially responsible and to identify the pathways involved in thyroid carcinoma development. Results: Only three genes (Nrg1, Rrs1, Rasal2) were mutated in all mice examined, none of which were known primary drivers of papillary thyroid cancer development. Wild-type and homozygous TSHR D633H knockin mice showed distinct phosphoproteome profiles with an enrichment of altered phosphosites found in ERK/mitogen-activated protein kinase (MAPK) signaling. Most importantly, phosphosites with known downstream effects included BRAF p.S766, which forms an inhibitory site: a decrease of phosphorylation at this site suggests an increase in MEK/ERK pathway activation. The decreased phosphorylation at BRAF p.S766 would suggest decreased AMP-activated protein kinase (AMPK) signaling, which is supported by the decreased phosphorylation of STIM1 p.S257, a downstream AMPK target. Conclusion: The modified phosphoproteome profile of the homozygous mice in combination with human literature suggests a potential signaling pathway from constitutive TSHR signaling and cAMP activation to the activation of ERK/MAPK signaling. This is the first time that a specific mechanism has been identified for a possible involvement of TSH signaling in thyroid carcinoma development.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Receptores de Tirotropina/genética , Transducción de Señal/genética , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Tirotropina/metabolismo
4.
Mol Cancer Res ; 21(1): 36-50, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36214668

RESUMEN

The ability of a patient tumor to engraft an immunodeficient mouse is the strongest known independent indicator of poor prognosis in early-stage non-small cell lung cancer (NSCLC). Analysis of primary NSCLC proteomes revealed low-level expression of mitochondrial aconitase (ACO2) in the more aggressive, engrafting tumors. Knockdown of ACO2 protein expression transformed immortalized lung epithelial cells, whereas upregulation of ACO2 in transformed NSCLC cells inhibited cell proliferation in vitro and tumor growth in vivo. High level ACO2 increased iron response element binding protein 1 (IRP1) and the intracellular labile iron pool. Impaired cellular proliferation associated with high level ACO2 was reversed by treatment of cells with an iron chelator, whereas increased cell proliferation associated with low level ACO2 was suppressed by treatment of cells with iron. Expression of CDGSH iron-sulfur (FeS) domain-containing protein 1 [CISD1; also known as mitoNEET (mNT)] was modulated by ACO2 expression level and inhibition of mNT by RNA interference or by treatment of cells with pioglitazone also increased iron and cell death. Hence, ACO2 is identified as a regulator of iron homeostasis and mNT is implicated as a target in aggressive NSCLC. IMPLICATIONS: FeS cluster-associated proteins including ACO2, mNT (encoded by CISD1), and IRP1 (encoded by ACO1) are part of an "ACO2-Iron Axis" that regulates iron homeostasis and is a determinant of a particularly aggressive subset of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Hierro/metabolismo , Aconitato Hidratasa/genética , Aconitato Hidratasa/metabolismo , Homeostasis , Proteínas de la Membrana/metabolismo , Proteínas de Unión a Hierro
6.
Nat Cancer ; 3(5): 629-648, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35422502

RESUMEN

Diffuse midline gliomas (DMGs) bearing driver mutations of histone 3 lysine 27 (H3K27M) are incurable brain tumors with unique epigenomes. Here, we generated a syngeneic H3K27M mouse model to study the amino acid metabolic dependencies of these tumors. H3K27M mutant cells were highly dependent on methionine. Interrogating the methionine cycle dependency through a short-interfering RNA screen identified the enzyme methionine adenosyltransferase 2A (MAT2A) as a critical vulnerability in these tumors. This vulnerability was not mediated through the canonical mechanism of MTAP deletion; instead, DMG cells have lower levels of MAT2A protein, which is mediated by negative feedback induced by the metabolite decarboxylated S-adenosyl methionine. Depletion of residual MAT2A induces global depletion of H3K36me3, a chromatin mark of transcriptional elongation perturbing oncogenic and developmental transcriptional programs. Moreover, methionine-restricted diets extended survival in multiple models of DMG in vivo. Collectively, our results suggest that MAT2A presents an exploitable therapeutic vulnerability in H3K27M gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Metionina Adenosiltransferasa/metabolismo , Animales , Neoplasias Encefálicas/genética , Epigenoma , Glioma/genética , Histonas/genética , Metionina/genética , Ratones
7.
Nat Commun ; 13(1): 1811, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383171

RESUMEN

Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide. Only a fraction of NSCLC harbor actionable driver mutations and there is an urgent need for patient-derived model systems that will enable the development of new targeted therapies. NSCLC and other cancers display profound proteome remodeling compared to normal tissue that is not predicted by DNA or RNA analyses. Here, we generate 137 NSCLC patient-derived xenografts (PDXs) that recapitulate the histology and molecular features of primary NSCLC. Proteome analysis of the PDX models reveals 3 adenocarcinoma and 2 squamous cell carcinoma proteotypes that are associated with different patient outcomes, protein-phosphotyrosine profiles, signatures of activated pathways and candidate targets, and in adenocarcinoma, stromal immune features. These findings portend proteome-based NSCLC classification and treatment and support the PDX resource as a viable model for the development of new targeted therapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones SCID , Ensayos Antitumor por Modelo de Xenoinjerto
8.
PLoS One ; 15(9): e0237981, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903271

RESUMEN

Serine hydroxymethyltransferase 2 (SHMT2) converts serine plus tetrahydrofolate (THF) into glycine plus methylene-THF and is upregulated at the protein level in lung and other cancers. In order to better understand the role of SHMT2 in cancer a model system of HeLa cells engineered for inducible over-expression or knock-down of SHMT2 was characterized for cell proliferation and changes in metabolites and proteome as a function of SHMT2. Ectopic over-expression of SHMT2 increased cell proliferation in vitro and tumor growth in vivo. Knockdown of SHMT2 expression in vitro caused a state of glycine auxotrophy and accumulation of phosphoribosylaminoimidazolecarboxamide (AICAR), an intermediate of folate/1-carbon-pathway-dependent de novo purine nucleotide synthesis. Decreased glycine in the HeLa cell-based xenograft tumors with knocked down SHMT2 was potentiated by administration of the anti-hyperglycinemia agent benzoate. However, tumor growth was not affected by SHMT2 knockdown with or without benzoate treatment. Benzoate inhibited cell proliferation in vitro, but this was independent of SHMT2 modulation. The abundance of proteins of mitochondrial respiration complexes 1 and 3 was inversely correlated with SHMT2 levels. Proximity biotinylation in vivo (BioID) identified 48 mostly mitochondrial proteins associated with SHMT2 including the mitochondrial enzymes Acyl-CoA thioesterase (ACOT2) and glutamate dehydrogenase (GLUD1) along with more than 20 proteins from mitochondrial respiration complexes 1 and 3. These data provide insights into possible mechanisms through which elevated SHMT2 in cancers may be linked to changes in metabolism and mitochondrial function.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Glicina Hidroximetiltransferasa/metabolismo , Neoplasias Pulmonares/patología , Metaboloma , Proteoma/análisis , Serina/metabolismo , Animales , Antifúngicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Glicina Hidroximetiltransferasa/genética , Células HeLa , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Dominios y Motivos de Interacción de Proteínas , Benzoato de Sodio/farmacología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...