Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 669, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004716

RESUMEN

BACKGROUND: Fenugreeks (Trigonella L. spp.), belonging to the legume family (Fabaceae), are well-known multipurpose crops that their materials are currently received much attention in the pharmaceutical and food industries for the production of healthy and functional foods all over the world. Iran is one of the main diversity origins of this valuable plant. Therefore, the aim of the present study was to explore vitamins, minerals, and fatty acids profile, proximate composition, content of diosgenin, trigonelline, phenolic acids, total carotenoids, saponins, phenols, flavonoids, and tannins, mucilage and bitterness value, and antioxidant activity of the seed of thirty populations belonging to the ten different Iranian Trigonella species. RESULTS: We accordingly identified notable differences in the nutrient and bioactive compounds of each population. The highest content (mg/100 g DW) of ascorbic acid (18.67 ± 0.85‒22.48 ± 0.60) and α-tocopherol (31.61 ± 0.15‒38.78 ± 0.67) were found in the populations of T. filipes and T. coerulescens, respectively. Maximum content of catechin was found in the populations of T. teheranica (52.67 ± 0.05‒63.50 ± 0.72 mg/l). Linoleic acid (> 39.11% ± 0.61%) and linolenic acid (> 48.78 ± 0.39%) were the main polyunsaturated fatty acids, with the majority in the populations of T. stellata (54.81 ± 1.39‒63.46 ± 1.21%). The populations of T. stellata were also rich in trigonelline (4.95 ± 0.03‒7.66 ± 0.16 mg/g DW) and diosgenin (9.06 ± 0.06‒11.03 ± 0.17 mg/g DW). CONCLUSIONS: The obtained data provides baseline information to expand the inventory of wild and cultivated Iranian Trigonella species for further exploitation of rich chemotypes in the new foods and specific applications.


Asunto(s)
Alcaloides , Antioxidantes , Diosgenina , Ácidos Grasos , Semillas , Trigonella , Antioxidantes/metabolismo , Alcaloides/análisis , Irán , Semillas/química , Ácidos Grasos/análisis , Trigonella/química , Minerales/análisis , Fenoles/metabolismo , Nutrientes/análisis
2.
Sci Rep ; 14(1): 11034, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744977

RESUMEN

Currently, the stable, uniform, and highly efficient production of raw materials for pharmaceutical companies has received special attention. To meet these criteria and reduce harvesting pressure on the natural habitats of licorice (Glycyrrhiza glabra L.), cultivation of this valuable plant is inevitable. In the present study, to introduce the glycyrrhizic acid (GA)- and glabridin-rich genotypes from cultivated Iranian licorice, forty genotypes from eight high-potential wild populations were cultivated and evaluated under the same environmental conditions. The GA content varied from 5.00 ± 0.04 mg/g DW (TF2 genotype) to 23.13 ± 0.02 mg/g DW (I5 genotype). The highest and lowest glabridin content were found in the K2 (0.72 ± 0.021 mg/g DW) and M5 (0.02 ± 0.002 mg/g DW) genotypes, respectively. The rutin content in the leaves of the studied genotypes varied from 1.27 ± 0.02 mg/g DW in E4 to 3.24 ± 0.02 mg/g DW in BO5 genotypes. The genotypes from the Ilam population were characterized by higher vegetative growth and yield traits in the aerial parts and roots. The average root dry yield was 2.44 tons per hectare (t/ha) among the studied genotypes and a genotype from Ilam (I5) yielded the maximum value (3.08 ± 0.034 t/ha). The highest coefficient of variation among the genotypes was observed for leaf width (CV = 34.9%). The GA and glabridin-rich genotypes introduced in this study can be used in the future breeding programs to release new bred licorice cultivars.


Asunto(s)
Genotipo , Glycyrrhiza , Ácido Glicirrínico , Isoflavonas , Fenoles , Ácido Glicirrínico/metabolismo , Isoflavonas/metabolismo , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Fenoles/metabolismo , Irán , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo
3.
Plant Physiol Biochem ; 208: 108479, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38461752

RESUMEN

Drought is known to be the most important constraint to the growth and yield of agricultural products in the world, and plant symbiosis with arbuscular mycorrhizal fungi (AMF) can be a way to reduce drought stress negative impacts. A two-year experiment to investigate the factorial combination of mycorrhizal fungi (Glomus mosseae, Glomus intraradices, Control) and phosphorus fertilizer (application and non-application of phosphorus) on fruit yield and phenolic acids changes bitter gourd under different irrigation regimes as a split factorial based on a randomized complete block design. Three irrigation regimes, including irrigation after 20%, 50%, and 80% available soil water content depletion (ASWD), were considered in the main plots. The results showed that under water deficit stress, fruit yield and physiological (photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), RWC, total chlorophyll, and root colonization) parameters decreased compared to 20% ASWD, and biochemical (proline, soluble sugar, MDA, CAT, SOD, phenol) parameters and fruit phenolic acids (caffeic acid, coumaric acid, ferulic acid) increased. However, the inoculation of AMF and phosphorus fertilizer in three irrigation regimes decreased MDA content, but physiological and biochemical parameters and fruit phenolic acids were increased. In this study, the factorial combination of AMF and sufficient phosphorus improved the resistance of bitter gourd to water deficit, and this not only improved fruit yield but also increased fruit phenolic acids under 80% ASWD, which can be an innovation in the management of water resources and the production industry of medicinal plants with high antioxidant properties in water deficit areas.


Asunto(s)
Momordica charantia , Micorrizas , Fertilizantes , Frutas , Micorrizas/fisiología , Fósforo , Agua
4.
Physiol Mol Biol Plants ; 30(1): 67-80, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38435858

RESUMEN

An efficient in vitro protocol was introduced for the conservation of Nepeta asterotricha, a vulnerable and endangered medicinal species found in the central of Iran for the first time. Growth, phytochemical, and biological traits of in vitro regenerated plant (RP) and acclimated plant (AP) were compared to the mother plant (MP). In addition, the genetic stability of AP was assessed by using inter-simple sequence repeats (ISSR) markers. The highest number of lateral branches (4.25) was obtained from the medium with 3 mg/mL kinetin (KIN), while the highest length of lateral branches (13.25 cm) was achieved on the medium culture fortified with 3 mg/mL thidiazuron (TDZ) and 6-benzylaminopurine (BAP). The highest number of leaves (20.25) and main branch length (12.25 cm) were obtained from the medium containing 3 mg/mL TDZ. The highest number of roots (46.25) and root length (2.25 cm) was measured from the medium fortified with 1 mg/mL indole-3-butyric acid (IBA) and 0.6 mg/mL indole-3-acetic acid (IAA), respectively. RP was successfully acclimated (85%) in vivo. Molecular analysis showed that the AP was true to the type of the MP. cis-Sabinene hydrate (26.8-57.7), 1,8-cineole (6.2-24.1), 4aα,7ß,7aα-nepetalactone (4.1-12.3), and terpinene-4-ol (3.2-15.0) were the major essential oils compounds. The studied samples contained rosmarinic acid (2.55-5.97 mg/g DW), cichoric acid (1.68-12.7 mg/g DW), chlorogenic acid (1.91-64.21 mg/g DW), rutin (0.59-1.09 mg/g DW), apigenin (0.52-0.72 mg/g DW), betulinic acid (0.17-2.20 mg g DW), oleanolic acid (0.84-5.37 mg/g DW) and ursolic acid (3.46-15.70 mg/g DW). Acclimated plant exhibited the highest antioxidant activity (IC50 = 196.4 µg/mL), while the methanolic extract of MP displayed the highest antibacterial activity (MIC = 8 mg/mL) against Staphylococcus aureus. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01416-x.

5.
BMC Plant Biol ; 24(1): 13, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163882

RESUMEN

The ability of a data fusion system composed of a computer vision system (CVS) and an electronic nose (e-nose) was evaluated to predict key physiochemical attributes and distinguish red-fleshed kiwifruit produced in three distinct regions in northern Iran. Color and morphological features from whole and middle-cut kiwifruits, along with the maximum responses of the 13 metal oxide semiconductor (MOS) sensors of an e-nose system, were used as inputs to the data fusion system. Principal component analysis (PCA) revealed that the first two principal components (PCs) extracted from the e-nose features could effectively differentiate kiwifruit samples from different regions. The PCA-SVM algorithm achieved a 93.33% classification rate for kiwifruits from three regions based on data from individual e-nose and CVS. Data fusion increased the classification rate of the SVM model to 100% and improved the performance of Support Vector Regression (SVR) for predicting physiochemical indices of kiwifruits compared to individual systems. The data fusion-based PCA-SVR models achieved validation R2 values ranging from 90.17% for the Brix-Acid Ratio (BAR) to 98.57% for pH prediction. These results demonstrate the high potential of fusing artificial visual and olfactory systems for quality monitoring and identifying the geographical growing regions of kiwifruits.


Asunto(s)
Algoritmos , Nariz Electrónica , Inteligencia Artificial , Irán
6.
Sci Rep ; 14(1): 87, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167975

RESUMEN

Fenugreek (Trigonella foenum-graecum L.) is a multi-use annual forage legume crop that is widely used in food products such as syrup, bitter run, curries, stew, and flavoring. In the present study, morphological traits, proximate composition (moisture, crude fibre, protein, fat, carbohydrate, and energy value), total phenol and total flavonoid contents, and antioxidant properties of 31 Iranian agro-ecotypic populations of the plant was investigated. Among the leaf and seed samples studied, the seeds exhibited the high ash (3.94 ± 0.12%), fat (7.94 ± 0.78%), crude fibre (10.3 ± 0.25%), protein (35.41 ± 1.86%), and carbohydrate (50.5 ± 1.90%) content. In general, more energy value (kcal/100 g) was also obtained from the seed (318.88 ± 1.78-350.44 ± 1.27) than leaf samples (45.50 ± 1.32-89.28 ± 0.85). Antioxidant activity and power of leaf samples were ranged from 67.95 ± 0.05‒157.52 ± 0.20 µg/ml and from 45.17 ± 0.01‒361.92 ± 0.78 µmol Fe+2 per g dry weigh, respectively. Positive linear correlations between antioxidant activity and total phenolic compounds were observed. A significant correlation between proximate composition (dependent variable) and some morphological features (independent variable) was observed. Considerable variability in the studied traits among the plant samples can be interestingly used in further food and production systems.


Asunto(s)
Antioxidantes , Trigonella , Antioxidantes/metabolismo , Trigonella/química , Irán , Extractos Vegetales/química , Semillas/metabolismo , Carbohidratos/análisis , Fitoquímicos/análisis
7.
Neurochem Res ; 49(2): 306-326, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37940760

RESUMEN

Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Animales , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fenoles/farmacología , Fenoles/uso terapéutico , Polifenoles/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Inflamación/tratamiento farmacológico
8.
Sci Rep ; 13(1): 22123, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092901

RESUMEN

Nisin, derived from Lactococcus lactis, is a well-known natural food preservative. In the present study, the gene of nisin was transformed to carrot by Agrobacterium tumefaciens strain LBA4404 harboring the recombinant binary vector pBI121 containing neomycin phosphotransferase II (nptII) gene, peptide signal KDEL, and Kozak sequence. The integration of nisin and nptII transgenes into the plant genome was confirmed by polymerase chain reaction (PCR) and dot blot analysis. The gene expression was also performed by RT-PCR and Enzyme-Linked Immunosorbent Assay. The level of nisin expressed in one gram of transgenic plant ranged from 0.05 to 0.08 µg/ml. The stability of nisin varied in orange and peach juices depending on the temperature on the 70th day. The leaf protein extracted from the transgenic plant showed a significant preservative effect of nisin in peach and orange juice. A complete inhibition activity against Staphylococcus aureus and Escherichia coli in orange juice was observed within 24 h. After 24 h, log 1 and log 2 were obtained in a peach juice containing Staphylococcus aureus and Escherichia coli, respectively. Results of HPLC indicated that Chlorogenic and Chicoric acid compounds were increased in transgenic plants, but this increase was not significant. The study of determining the genetic stability of transgenic plants in comparison with non-transgenic plants showed high genetic stability between non-transgenic plants and transgenic plants. This study confirmed the significant inhibitory effect of nisin protein on gram-positive and gram-negative bacteria.


Asunto(s)
Daucus carota , Lactococcus lactis , Nisina , Antibacterianos/farmacología , Antibacterianos/metabolismo , Daucus carota/genética , Bacterias Gramnegativas , Bacterias Grampositivas , Plantas Modificadas Genéticamente/genética , Escherichia coli/metabolismo , Lactococcus lactis/metabolismo
9.
Sci Rep ; 13(1): 22721, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123628

RESUMEN

Rosa canina L. (Rosaceae), commonly known as the rose hip, is originated from Europe, Africa, and Asia with a long history in medicinal applications. This study aimed to analyze the morphological traits, fatty acids profile, and content of phenolic compounds, anthocyanins, vitamin C, total carotenoid, total phenol, total flavonoid, and antioxidant activity of the fruits of eleven Iranian R. canina ecotypes (RCEs). The highest coefficient of variation was obtained in 1000 seed weight (46.57%). The seed oil varied from 8.08 ± 0.17% to 16.91 ± 0.35%. Linoleic (35.41 ± 0.78% to 49.59 ± 0.96%) and eicosanoic (17.67 ± 0.06% to 25.36 ± 0.54%) acids were the predominant fatty acids in the studied samples. The anthocyanin content in the fruits was ranged from 0.98 ± 0.03 to 4.41 ± 0.04 mg cyanidin 3-glucoside/100 g of dry weight (mg C3G/100 g DW). The high content of vitamin C (103.51 ± 1.24-419.70 ± 3.12 mg/100 g DW), total carotenoid (111.22 ± 0.78-206.98 ± 1.25 mg ß-carotene equivalents per g of dry weight (mg ß-CARE/g DW)), total phenol (52.87 ± 0.82-104.52 ± 0.23 mg GAE/g DW), and total flavonoid (14.20 ± 0.12-25.18 ± 0.47 mg RE/g DW) were observed in the studied samples. Catechin (20.42 ± 0.47-19.22 ± 0.13 µg/g DW) was the major phenolic compound. The high antioxidant activity in the fruits of the plant was recorded in the studied RCEs (IC50 = 12.54 ± 0.18-26.33 ± 0.13 µg/ml). A significant correlation between some phytochemical compounds (dependent variable) and morphological features (independent variable) was found. Based on our findings, the fruit of the studied ecotypes can be used for future breeding programs and drug development.


Asunto(s)
Antioxidantes , Rosa , Antioxidantes/química , Rosa/química , Antocianinas , Ácidos Grasos , Irán , Ecotipo , Extractos Vegetales/química , Ácido Ascórbico , Flavonoides/química , Fenoles/análisis , Carotenoides/química , Semillas/química , Aceites de Plantas
10.
Plant Physiol Biochem ; 204: 108151, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37931559

RESUMEN

Perilla frutescens (L.) Britt is a renowned medicinal plant with pharmaceutically valuable phenolic acids and flavonoids. The present study was aimed to study the eliciting effect of silver and copper nanoparticles (AgNPs and CuNPs, 50 and 100 mg/L), and methyl jasmonate (MeJa, 50 and 100 µM) on the biochemical traits, the accumulation of phenolic compounds and antioxidative capacity of P. frutescens cell suspension culture. Suspension cells were obtained from friable calli derived from nodal explants in Murashige and Skoog (MS) liquid medium containing 1 mg/L 2,4-D and 1 mg/L BAP. The 21 days old cell suspension culture established from nodal explant derived callus supplemented with 100 mg/L MeJa resulted in the highest activity of catalase and guaiacol peroxidase enzymes, and CuNPs 100 mg/L treated cells indicated the maximum content of total phenol, total anthocyanin, superoxide dismutase, malondialdehyde, and H2O2. Also, the highest content of ferulic acid (1.41 ± 0.03, mg/g DW), rosmarinic acid (19.29 ± 0.12, mg/g DW), and phenylalanine ammonia-lyase (16.81 ± 0.18, U/mg protein) were observed with 100 mg/L CuNPs, exhibiting a total increase of 1.58-fold, 2.12-fold, and 1.51-fold, respectively, higher than untreated cells. On the other hand, AgNPs 100 mg/L treated cells indicated the most amounts of caffeic acid (0.57 ± 0.03, mg/g DW) and rutin (1.13 ± 0.07, mg/g DW), as well as the highest scavenging potential of free radicals. Overall, the results of the present study can be applied for the large-scale production of valuable phenolic acids and flavonoids from P. frutescens through CuNPs and AgNPs 100 mg/L elicited cell suspension cultures.


Asunto(s)
Perilla frutescens , Peróxido de Hidrógeno , Fenoles/química , Antioxidantes/química , Flavonoides , Técnicas de Cultivo de Célula
11.
Mycobiology ; 51(4): 230-238, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711984

RESUMEN

Glabridin is a well-known active isoflavone found in the root of licorice (Glycyrrhiza glabra L.) that possess a wide range of biological activity. Plant cells, hairy roots, and fungal endophytes cultures are the most important alternative methods for plant resources conservation and sustainable production of natural compounds, which has received much attention in recent decades. In the present study, an efficient culture condition was optimized for the biomass accumulation and glabridin production from fungal endophyte Aspergillus eucalypticola SBU-11AE isolated from licorice root. Type of culture medium, range of pH, and licorice root extract (as an elicitor) were tested. The results showed that the highest and lowest biomass production was observed on PCB medium (6.43 ± 0.32 g/l) and peptone malt (5.85 + 0.11 g/l), respectively. The medium culture PCB was produced the highest level of glabridin (7.26 ± 0.44 mg/l), while the lowest level (4.47 ± 0.02 mg/l) was obtained from the medium peptone malt. The highest biomass (8.51 ± 0.43 g/l) and glabridin (8.30 ± 0.51 mg/l) production were observed from the PCB medium adjusted with pH = 6, while the lowest value of both traits was obtained from the same medium with pH = 7. The highest production of total glabridin (10.85 ± 0.84 mg/l) was also obtained from the culture medium treated with 100 mg/l of the plant root extract. This information can be interestingly used for the commercialization of glabridin production for further industrial applications.

12.
Sci Rep ; 13(1): 9219, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286620

RESUMEN

Linum album is a well-known rich source of anticancer compounds, i.e., podophyllotoxin (PTOX) and other lignans. These compounds play an important role in the plant's defensive system. The RNA-Seq data of flax (L. usitatissimum) were analyzed under various biotic and abiotic stresses to comprehend better the importance of lignans in plant defense responses. Then, the association between the lignan contents and some related gene expressions was experimented with HPLC and qRT-PCR, respectively. Transcriptomic profiling showed a specific expression pattern in different organs, and just the commonly regulated gene EP3 was detected with a significant increase under all stresses. The in silico analysis of the PTOX biosynthesis pathway identified a list of genes, including laccase (LAC11), lactoperoxidase (POD), 4-coumarate-CoA ligase (4CL), and secoisolariciresinol dehydrogenase (SDH). These genes increased significantly under individual stresses. The HPLC analysis showed that the measured lignan contents generally increased under stress. In contrast, a quantitative expression of the genes involved in this pathway using qRT-PCR showed a different pattern that seems to contribute to regulating PTOX content in response to stress. Identified modifications of critical genes related to PTOX biosynthesis in response to multiple stresses can provide a baseline for improving PTOX content in L. album.


Asunto(s)
Lino , Lignanos , Linaceae , Podofilotoxina , Lino/genética , Lino/metabolismo , Linaceae/genética , RNA-Seq , Lignanos/metabolismo
13.
Sci Rep ; 13(1): 6391, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076588

RESUMEN

Green synthesized nanoparticles (GSNPs) display fascinating properties compared to physical and chemical synthesized ones. GSNPs are currently used in numerous applications such as food packaging, surface coating agents, environmental remediation, antimicrobial, and medicine. In the present study, the aqueous leaf extract of Perilla frutescens L. having suitable capping, reducing, and stabilizing compounds was used for green synthesis of silver nanoparticles (Pf-AgNPs). The bioreductant capacity of aqueous leaf extract of P. frutescens for Pf-AgNPs was determined by different confirmatory techniques including UV-Visible spectroscopy, XRD, FESEM, EDX, zeta potential, DLS, SERS, and FTIR analysis. The results exhibited that Pf-AgNPs had optimal size (< 61 nm), shape (spherical), and stability (- 18.1 mV). The antioxidant activity of Pf-AgNPs with both DPPH and FRAP assays was significantly higher compared to P. frutescens extract. Furthermore, Pf-AgNPs had high antimicrobial activity against Escherichia coli and Staphylococcus aureus (MIC = 0.78 mg/mL), and Candida albicans (MIC = 8 mg/mL) while the plant extract showed low antimicrobial activity against both bacterial strains and the fungus tested. Pf-AgNPs and P. frutescens extract also exhibited moderate toxicity on MCF-7 cancer cells with IC50 values of 346.2 and 467.4 µg/mL, respectively. The results provide insights into using the biosynthesized Pf-AgNPs as an eco-friendly material for a wide range of biomedical applications.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Perilla frutescens , Humanos , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Antiinfecciosos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Tecnología Química Verde/métodos
14.
Sci Rep ; 12(1): 15645, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123425

RESUMEN

The seeds of Trachyspermum ammi were gathered at the ripening stage from different regions of Iran and grouped into 14 populations (P1-P14) accordingly. The essential oil (EO) extraction yielded in the 3.16-5% range. EOs were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS) and 11 constituents were identified. Thymol (59.92-96.4%), p-cymene (0.55-21.15%), γ-terpinene (0.23-17.78%), and carvacrol (0.41-2.77%) were the major constituents. The highest contents of thymol and carvacrol were found in the Ghayen population (P2). Also, P2 and P8 (Estahban) had the highest value of total phenol (TPC) 43.2 mg gallic acid equivalent (GAE)/g DW, and total flavonoids (TFC) 8.03 mg quercetin equivalent (QE)/g DW, respectively. P1 (Kalat) had the highest total coumarin (TCC) value (0.26 mg coumarin equivalent CE/g DW). Based on EO constituents, principal component analysis (PCA) and cluster analysis classified populations into two chemotypes of thymol/p-cymene/γ-terpinene and thymol/carvacrol. The highest positive correlation coefficient was between α-terpinene and limonene (0.96), while the highest negative correlation was between thymol and p-cymene (-0.984). The antioxidant activities of extracts and EOs were evaluated by phosphomolybdenum (total antioxidant capacity; TAC), diphenylpicrylhydrazyl (DPPH IC50), and ferric ion reducing antioxidant power (FRAP) assays. Also, the antimicrobial activity of EOs was studied against Escherichia coli and Staphylococcus aureus. P8 with high thymol, EO content (%v/w), TFC, and antibacterial and antioxidant activities is recommended but further studies are needed to confirm the chemotype introduction.


Asunto(s)
Ammi , Aceites Volátiles/química , Fenoles/análisis , Timol/análisis , Ammi/química , Antibacterianos/análisis , Antibacterianos/farmacología , Antioxidantes/análisis , Antioxidantes/farmacología , Cumarinas , Monoterpenos Ciclohexánicos , Cimenos/análisis , Ácido Gálico/análisis , Cromatografía de Gases y Espectrometría de Masas , Irán , Limoneno/análisis , Aceites Volátiles/aislamiento & purificación , Aceites Volátiles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Quercetina/análisis , Semillas/química , Timol/farmacología
15.
J Photochem Photobiol B ; 234: 112532, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35908357

RESUMEN

Taxus baccata L. cell culture is a promising commercial method for the production of taxanes with anti-cancer activities. In the present study, a T. baccata cell suspension culture was exposed to white light and 2-aminoindan-2-phosphonic acid (AIP), a phenylalanine ammonia lyase (PAL) inhibitor, and the effects of this treatment on cell growth, PAL activity, total phenol content (TPC), total flavonoid content (TFC), taxane production and the expression of some key taxane biosynthetic genes (DXS, GGPPS, T13OH, BAPT, DBTNBT) as well as the PAL were studied. Light reduced cell growth, whereas AIP slightly improved it. Light increased PAL activity up to 2.7-fold relative to darkness. The highest TPC (24.89 mg GAE/g DW) and TFC (66.94 mg RUE/g DW) were observed in cultures treated with light and AIP. Light treatment also resulted in the maximum content of total taxanes (154.78 µg/g DW), increasing extracellular paclitaxel and cephalomannin (3.3-fold) and intracellular 10-deacetyl paclitaxel (2.5-fold). Light significantly increased the expression level of PAL, DBTNBT, BAPT, and T13αOH genes, whereas it had no effect on the expression of DXS, a gene active at the beginning of the taxane biosynthetic pathway. AIP had no significant effect on the expression of the target genes. In conclusion, the light-induced activation of PAL transcription and altered expression of relevant biosynthetic genes reduced cell growth and increased the content of total phenolic compounds and taxanes. These findings can be applied to improve taxane production in controlled cultures and bioreactors.


Asunto(s)
Taxus , Hidrocarburos Aromáticos con Puentes , Técnicas de Cultivo de Célula , Flavonoides/metabolismo , Expresión Génica , Paclitaxel , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Taxoides , Taxus/genética , Taxus/metabolismo
16.
Nat Prod Res ; 36(5): 1332-1336, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33356575

RESUMEN

The genus Salvia L. belongs to the Lamiaceae family including several known species rich in natural compounds that are extensively used in pharmaceutical, food, and cosmetic industries. Salvia multicaulis populations contain a broad diversity of flavonoids and phenolic acids. The present study aimed to explore biological and pharmacological effects including antimicrobial and antioxidant activities of nineteen S. multicaulis populations (SMPs) grown in Iran for the first time. High content of rosmarinic acid (RA) in SMP12 (Gazan) (5.65 ± 0.33 mg/g DW) caused high antimicrobial activity against two bacteria (Staphylococcus aureus, Escherichia coli) and the fungus Candida albicans, while methanolic extract of SMP1 (Taleghan) showed high antioxidant activity due to high content of salvianolic acid A (SAA) and quercetin (0.53 ± 0.04 and 0.49 ± 0.12 mg/g DW, respectively). Altogether these results can be considered for further commercial exploitations to meet the demands of the food and pharmaceutical industries.[Formula: see text].


Asunto(s)
Antiinfecciosos , Salvia , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Fenoles/farmacología , Extractos Vegetales/farmacología
17.
Phytochemistry ; 189: 112803, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34144408

RESUMEN

The induction of polyploidy is an efficient technique for creating a diversity of genetic, phenotypic, and phytochemical novelties in plant taxa. Sage (Salvia officinalis L.) is a well-known medicinal plant rich of valuable bioactive molecules such as triterpenic and phenolic acids. In the present study, the effect of in vitro and in vivo polyploidization on morphological characteristics, anatomical structures, phytochemical traits, and expression level of the genes involved in the biosynthesis of major triterpenic acids (ursolic, betulinic, and oleanolic acids) of the plant was studied. The sterile seeds treated with different concentrations (0, 0.05, 0.1, and 0.2%) of colchicine for 24 and 48 h were considered for polyploidy induction. Flow cytometry and chromosome counting were used to confirm the ploidy level of diploid (2n = 2x = 14, 2C DNA = 1.10 pg) and tetraploid (2n = 4x = 28, 2C DNA = 2.12 pg) plants after seven months. The highest polyploidy induction was obtained by applying 0.1% (w/v) colchicine for 48 h with an efficiency of 19.05% in vitro tetraploidy. Polyploids showed differences in leaf shape and color, leaf and stem thickness, trichrome density, root length, plant height, and number of leaves compared to diploid plants. There was also a significant decrease in rosmarinic acid content in polyploid (plants) as compared to diploid plants. Although a significant decrease in ursolic acid content was observed in polyploids, betulinic acid content associated with the expression levels of genes encoding enzymes being active in triterpene biosynthesis such as squalene epoxidase (SQE) and lupeol synthase (LUS). The expression of SQE and LUS was significantly increased in in vitro tertaploids (2.9-fold) and in vivo mixoploids (2.4-fold). The results confirm the idea that induced polyploidy can randomly alter breeding traits of plants as well as the content of bioactive compounds.


Asunto(s)
Plantas Medicinales , Salvia officinalis , Hojas de la Planta , Poliploidía , Salvia officinalis/genética , Tetraploidía
18.
Antioxidants (Basel) ; 9(12)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327619

RESUMEN

Modern lifestyle factors, such as physical inactivity, obesity, smoking, and exposure to environmental pollution, induce excessive generation of free radicals and reactive oxygen species (ROS) in the body. These by-products of oxygen metabolism play a key role in the development of various human diseases such as cancer, diabetes, heart failure, brain damage, muscle problems, premature aging, eye injuries, and a weakened immune system. Synthetic and natural antioxidants, which act as free radical scavengers, are widely used in the food and beverage industries. The toxicity and carcinogenic effects of some synthetic antioxidants have generated interest in natural alternatives, especially plant-derived polyphenols (e.g., phenolic acids, flavonoids, stilbenes, tannins, coumarins, lignins, lignans, quinines, curcuminoids, chalcones, and essential oil terpenoids). This review focuses on the well-known phenolic antioxidant rosmarinic acid (RA), an ester of caffeic acid and (R)-(+)-3-(3,4-dihydroxyphenyl) lactic acid, describing its wide distribution in thirty-nine plant families and the potential productivity of plant sources. A botanical and phytochemical description is provided of a new rich source of RA, Satureja khuzistanica Jamzad (Lamiaceae). Recently reported approaches to the biotechnological production of RA are summarized, highlighting the establishment of cell suspension cultures of S. khuzistanica as an RA chemical biofactory.

19.
Anal Biochem ; 609: 113920, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32827464

RESUMEN

The analysis of plant cell structure provides valuable information about its morphological, physiological, and biochemical characteristics. Nowadays, scanning electron microscope (SEM) is widely used to provide high-resolution images at the surface of biological samples. However, biological specimens require preparation, including dehydration and coating with conductive materials for imaging by SEM. There are several techniques for providing images with maximum maintenance of cell structure and minimum cellular damage, but each requires the use of expensive and hazardous materials, which can be damaging to the cell in many cases. Therefore, the provision of new and effective preparation methods based on maintaining cell structure for imaging can be very practical. In the present study, a fast and cost-effective protocol was first performed for chemical fixation and preparation of the plant cells for imaging by SEM. Taxus baccata and Zhumeria majdae cells were chemically fixed using glutaraldehyde and then successfully dried with different percentages of ethanol including 70, 80, 90, and 100%. In addition, SEM was performed for imaging the cell surface in different micro-scales. This protocol can be used by plant cell biologists and biotechnologists who are interested in studying structural and biochemical responses of treated or stressed plant cells by SEM.


Asunto(s)
Microscopía Electrónica de Rastreo , Células Vegetales/fisiología , Coloración y Etiquetado , Glutaral/química , Lamiaceae/química , Lamiaceae/citología , Lamiaceae/fisiología , Lamiaceae/ultraestructura , Células Vegetales/química , Células Vegetales/ultraestructura , Coloración y Etiquetado/economía , Coloración y Etiquetado/métodos , Taxus/química , Taxus/citología , Taxus/fisiología , Taxus/ultraestructura
20.
Plant Cell Tissue Organ Cult ; 142(1): 187-199, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32836585

RESUMEN

Narcissus tazetta L., a bulbous plant belongs to the Amaryllidaceae family, contains alkaloid galantamine (GAL) with acetylcholinesterase inhibitory activity which has been recently considered to treat Alzheimer's disease (AD). In the current work, the effect of photoperiod (16/8 h light/dark and 24 h dark) and various concentrations of NAA, BAP, and GA3 (0, 0.5, 1 and 2 mg l‒1) on the in vitro mass bulblet regeneration of N. tazetta was studied. The GAL production ability of the regenerated bulblets was assessed by HPLC-UV-MS. Light treatments significantly affected the number of bulblet and leaf, the ratio of bulblet/leaf, and leaf length. The maximum number of bulblet (31.0 ± 1.58) and leaf (13.3 ± 1.33) was recorded from the cultures fortified with NAA and BAP (2 mg l‒1) kept in 16/8 h light/dark, while the maximum leaf length (2.1 ± 0.92 cm) was measured on the MS medium containing 0.5 mg l‒1 NAA and 2 mg l‒1 BAP incubated in the same photoperiod. The average ratio of bulblet proliferation per explant was significantly different between studied photoperiod (1.1 ± 0.86) and 24 h dark (0.62 ± 0.31). The regenerated bulblets contained 40 and 20 µg g‒1 DW GAL underexposed photoperiod and 24 h dark, respectively. This information could be useful in the commercial production of GAL as a valuable anti-AD compound through in vitro mass bulblet proliferation of N. tazetta.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...