Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cancers (Basel) ; 16(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893160

RESUMEN

Malignant rhabdoid tumors (MRTs) are among the most aggressive and treatment-resistant malignancies affecting infants, originating in the kidney, brain, liver, and soft tissues. The 5-year event-free survival rate for these cancers is a mere 20%. In nearly all cases of MRT, the SMARCB1 gene (occasionally SMARCA4)-a pivotal component of the SWI/SNF chromatin remodeling complex-is homozygously deleted, although the precise etiology of these tumors remains unknown. While young patients with localized MRT generally show improved outcomes, especially those who are older and have early-stage disease, the overall prognosis remains poor despite optimal standard treatments. This highlights the urgent need for more effective treatment strategies. We investigated the antitumor activity of a PARP1 inhibitor (talazoparib, TLZ) combined with a DNA alkylating agent (temozolomide, TMZ) in MRT xenograft models. PARP1 is a widely targeted molecule in cancer treatment and, beyond its role in DNA repair, it participates in transcriptional regulation by recruiting chromatin remodeling complexes to modulate DNA accessibility for RNA polymerases. To widen the therapeutic window of the drug combination, we employed PEGylated TLZ (PEG~TLZ), which has been reported to reduce systemic toxicity through slow drug release. Remarkably, our findings indicate that five out of six MRT xenografts exhibited an objective response to PEG~TLZ+TMZ therapy. Significantly, the loss of SMARCB1 was found to confer a protective effect, correlating with higher expression levels of DNA damage and repair proteins in SMARCB1-deficient MRT cells. Additionally, we identified MGMT as a potential biomarker indicative of in vivo MRT response to PEG~TLZ+TMZ therapy. Moreover, our analysis revealed alterations in signaling pathways associated with the observed antitumor efficacy. This study presents a novel and efficacious therapeutic approach for MRT, along with a promising candidate biomarker for predicting tumor response.

2.
JCI Insight ; 8(14)2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37279066

RESUMEN

Stimulating the Gq-coupled P2Y2 receptor (P2ry2) lowers blood pressure. Global knockout of P2ry2 increases blood pressure. Vascular and renal mechanisms are believed to participate in P2ry2 effects on blood pressure. To isolate the role of the kidneys in P2ry2 effects on blood pressure and to reveal the molecular and cellular mechanisms of this action, we test here the necessity of the P2ry2 and the sufficiency of Gq-dependent signaling in renal principal cells to the regulation of the epithelial Na+ channel (ENaC), sodium excretion, and blood pressure. Activating P2ry2 in littermate controls but not principal cell-specific P2ry2-knockout mice decreased the activity of ENaC in renal tubules. Moreover, deletion of P2ry2 in principal cells abolished increases in sodium excretion in response to stimulation of P2ry2 and compromised the normal ability to excrete a sodium load. Consequently, principal cell-specific knockout of P2ry2 prevented decreases in blood pressure in response to P2ry2 stimulation in the deoxycorticosterone acetate-salt (DOCA-salt) model of hypertension. In wild-type littermate controls, such stimulation decreased blood pressure in this model of hypertension by promoting a natriuresis. Pharmacogenetic activation of Gq exclusively in principal cells using targeted expression of Gq-designer receptors exclusively activated by designer drugs and clozapine N-oxide decreased the activity of ENaC in renal tubules, promoting a natriuresis that lowered elevated blood pressure in the DOCA-salt model of hypertension. These findings demonstrate that the kidneys play a major role in decreasing blood pressure in response to P2ry2 activation and that inhibition of ENaC activity in response to P2ry2-mediated Gq signaling lowered blood pressure by increasing renal sodium excretion.


Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Ratones , Animales , Presión Sanguínea/fisiología , Receptores Purinérgicos P2Y2/genética , Sodio/metabolismo , Hipertensión/metabolismo , Ratones Noqueados
3.
Am J Physiol Renal Physiol ; 323(6): F633-F641, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36201326

RESUMEN

The activity of the epithelial Na+ channel (ENaC) in principal cells of the distal nephron fine-tunes renal Na+ excretion. The renin-angiotensin-aldosterone system modulates ENaC activity to control blood pressure, in part, by influencing Na+ excretion. NADPH oxidase activator 1-dependent NADPH oxidase 1 (NOXA1/NOX1) signaling may play a key role in angiotensin II (ANG II)-dependent activation of ENaC. The present study aimed to explore the role of NOXA1/NOX1 signaling in ANG II-dependent activation of ENaC in renal principal cells. Patch-clamp electrophysiology and principal cell-specific Noxa1 knockout (PC-Noxa1 KO) mice were used to determine the role of NOXA1/NOX1 signaling in ANG II-dependent activation of ENaC. The activity of ENaC in the luminal plasma membrane of principal cells was quantified in freshly isolated split-opened tubules using voltage-clamp electrophysiology. ANG II significantly increased ENaC activity. This effect was robust and observed in response to both acute (40 min) and more chronic (48-72 h) ANG II treatment of isolated tubules and mice, respectively. Inhibition of ANG II type 1 receptors with losartan abolished ANG II-dependent stimulation of ENaC. Similarly, treatment with ML171, a specific inhibitor of NOX1, abolished stimulation of ENaC by ANG II. Treatment with ANG II failed to increase ENaC activity in principal cells in tubules isolated from the PC-Noxa1 KO mouse. Tubules from wild-type littermate controls, though, retained their ability to respond to ANG II with an increase in ENaC activity. These results indicate that NOXA1/NOX1 signaling mediates ANG II stimulation of ENaC in renal principal cells. As such, NOXA1/NOX1 signaling in the distal nephron plays a central role in Na+ homeostasis and control of blood pressure, particularly as it relates to regulation by the renin-ANG II axis.NEW & NOTEWORTHY Activity of the epithelial Na+ channel (ENaC) in the distal nephron fine-tunes renal Na+ excretion. Angiotensin II (ANG II) has been reported to enhance ENaC activity. Emerging evidence suggests that NADPH oxidase (NOX) signaling plays an important role in the stimulation of ENaC by ANG II in principal cells. The present findings indicate that NOX activator 1/NOX1 signaling mediates ANG II stimulation of ENaC in renal principal cells.


Asunto(s)
Angiotensina II , Canales Epiteliales de Sodio , Animales , Ratones , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Angiotensina II/farmacología , Angiotensina II/metabolismo , NADPH Oxidasa 1/metabolismo , Sodio/metabolismo , Ratones Noqueados , NADPH Oxidasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
4.
Am J Physiol Renal Physiol ; 323(4): F468-F478, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35900342

RESUMEN

The renin-angiotensin-aldosterone and arginine vasopressin-V2 receptor-aquaporin-2 (AQP2) systems converge on the epithelial Na+ channel (ENaC) to regulate blood pressure and plasma tonicity. Although it is established that V2 receptors initiate renal water reabsorption through AQP2, whether V2 receptors can also induce renal Na+ retention through ENaC and raise blood pressure remains an open question. We hypothesized that a specific increase in V2 receptor-mediated ENaC activity can lead to high blood pressure. Our approach was to test effects of chronic activation of V2 receptors in Liddle mice, a genetic mouse model of high ENaC activity, and compare differences in ENaC activity, urine Na+ excretion, and blood pressure with control mice. We found that ENaC activity was elevated in Liddle mice and could not be stimulated further by administration of desmopressin (dDAVP), a V2 receptor-specific agonist. In contrast, Liddle mice showed higher levels of expression of AQP2 and aquaporin-3, but they could still respond to dDAVP infusion by increasing phospho-AQP2 expression. With dDAVP infusion, Liddle mice excreted smaller urine volume and less urine Na+ and developed higher blood pressure compared with control mice; this hypertension was attenuated with administration of the ENaC inhibitor benzamil. We conclude that V2 receptors contribute to hypertension in the Liddle mouse model by promoting primary Na+ and concomitant water retention.NEW & NOTEWORTHY Liddle syndrome is a classic model for hypertension from high epithelial Na+ channel (ENaC) activity. In the Liddle mouse model, vasopressin-2 receptors stimulate both ENaC and aquaporin-2, which increases Na+ and water retention to such an extent that hypertension ensues. Liddle mice will preserve plasma tonicity at the expense of a higher blood pressure; these data highlight the inherent limitation in which the kidney must use ENaC as a pathway to regulate both plasma tonicity and blood pressure.


Asunto(s)
Hipertensión , Desequilibrio Hidroelectrolítico , Animales , Acuaporina 2 , Desamino Arginina Vasopresina/farmacología , Canales Epiteliales de Sodio/metabolismo , Ratones , Receptores de Vasopresinas/metabolismo , Sodio/metabolismo , Agua/metabolismo
5.
Front Physiol ; 12: 725782, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512393

RESUMEN

The activity of the Epithelial Na+ Channel (ENaC) in renal principal cells (PC) fine-tunes sodium excretion and consequently, affects blood pressure. The Gs-adenylyl cyclase-cAMP signal transduction pathway is believed to play a central role in the normal control of ENaC activity in PCs. The current study quantifies the importance of this signaling pathway to the regulation of ENaC activity in vivo using a knock-in mouse that has conditional expression of Gs-DREADD (designer receptors exclusively activated by designer drugs; GsD) in renal PCs. The GsD mouse also contains a cAMP response element-luciferase reporter transgene for non-invasive bioluminescence monitoring of cAMP signaling. Clozapine N-oxide (CNO) was used to selectively and temporally stimulate GsD. Treatment with CNO significantly increased luciferase bioluminescence in the kidneys of PC-specific GsD but not control mice. CNO also significantly increased the activity of ENaC in principal cells in PC-specific GsD mice compared to untreated knock-in mice and CNO treated littermate controls. The cell permeable cAMP analog, 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, significantly increased the activity and expression in the plasma membrane of recombinant ENaC expressed in CHO and COS-7 cells, respectively. Treatment of PC-specific GsD mice with CNO rapidly and significantly decreased urinary Na+ excretion compared to untreated PC-specific GsD mice and treated littermate controls. This decrease in Na+ excretion in response to CNO in PC-specific GsD mice was similar in magnitude and timing as that induced by the selective vasopressin receptor 2 agonist, desmopressin, in wild type mice. These findings demonstrate for the first time that targeted activation of Gs signaling exclusively in PCs is sufficient to increase ENaC activity and decrease dependent urinary Na+ excretion in live animals.

6.
Sci Rep ; 11(1): 14600, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272444

RESUMEN

Activity of the Epithelial Na+ Channel (ENaC) in the distal nephron fine-tunes renal sodium excretion. Appropriate sodium excretion is a key factor in the regulation of blood pressure. Consequently, abnormalities in ENaC function can cause hypertension. Casein Kinase II (CKII) phosphorylates ENaC. The CKII phosphorylation site in ENaC resides within a canonical "anchor" ankyrin binding motif. CKII-dependent phosphorylation of ENaC is necessary and sufficient to increase channel activity and is thought to influence channel trafficking in a manner that increases activity. We test here the hypothesis that phosphorylation of ENaC by CKII within an anchor motif is necessary for ankyrin-3 (Ank-3) regulation of the channel, which is required for normal channel locale and function, and the proper regulation of renal sodium excretion. This was addressed using a fluorescence imaging strategy combining total internal reflection fluorescence (TIRF) microscopy with fluorescence recovery after photobleaching (FRAP) to quantify ENaC expression in the plasma membrane in living cells; and electrophysiology to quantify ENaC activity in split-open collecting ducts from principal cell-specific Ank-3 knockout mice. Sodium excretion studies also were performed in parallel in this knockout mouse. In addition, we substituted a key serine residue in the consensus CKII site in ß-ENaC with alanine to abrogate phosphorylation and disrupt the anchor motif. Findings show that disrupting CKII signaling decreases ENaC activity by decreasing expression in the plasma membrane. In the principal cell-specific Ank-3 KO mouse, ENaC activity and sodium excretion were significantly decreased and increased, respectively. These results are consistent with CKII phosphorylation of ENaC functioning as a "switch" that favors Ank-3 binding to increase channel activity.


Asunto(s)
Ancirinas/fisiología , Quinasa de la Caseína II/fisiología , Canales Epiteliales de Sodio/fisiología , Sustitución de Aminoácidos , Animales , Ancirinas/genética , Transporte Biológico , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Femenino , Hipertensión/etiología , Masculino , Proteínas de Transporte de Membrana/fisiología , Ratones , Ratones Noqueados , Nefronas/metabolismo , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Sodio/metabolismo
7.
Int J Radiat Biol ; 97(6): 848-860, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33979238

RESUMEN

PURPOSE: To date, only a few studies have examined long-term health risks of exposures in the uranium processing industry and reported contradictory results, necessitating further research in this area. This is the first description of a cohort of ∼65,000 uranium processing workers (20.6% women) of the Siberian Group of Chemical Enterprises (SGCE) in Seversk, Russia, first employed during 1950-2010. METHODS: SGCE is one of the largest and oldest uranium processing complexes in the world. SGCE workers at the Radiochemical, Plutonium, Sublimate and Enrichment plants were exposed to a combination of internal and external radiation, while workers at the Support Facility were primarily exposed to non-radiation factors. RESULTS: Mean cumulative gamma-ray dose based on individual external dosimetry was 28.3 millisievert. About 4,000 workers have individual biophysical survey data that could be used for estimation of organ doses from uranium. SGCE workers were followed up for mortality and cancer incidence during 1950-2013 (vital status known for 80.8% of workers). The SGCE computerized database contains information on the results of regular medical examinations, and on smoking, alcohol and other individual characteristics. CONCLUSIONS: The SGCE cohort is uniquely suited to examine long-term health risks of exposures to gamma-radiation and long-lived radionuclides in uranium processing workers.


Asunto(s)
Exposición Profesional/efectos adversos , Exposición a la Radiación/efectos adversos , Adulto , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Neoplasias Inducidas por Radiación/etiología , Factores de Riesgo , Federación de Rusia
8.
Am J Physiol Renal Physiol ; 320(3): F297-F307, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356953

RESUMEN

We reported that high salt (HS) intake stimulates renal collecting duct (CD) endothelin (ET) type B receptor (ETBR)/nitric oxide (NO) synthase 1ß (NOS1ß)-dependent NO production inhibiting the epithelial sodium channel (ENaC) promoting natriuresis. However, the mechanism underlying the HS-induced increase of NO production is unclear. Histone deacetylase 1 (HDAC1) responds to increased fluid flow, as can occur in the CD during HS intake. The renal inner medulla (IM), in particular the IMCD, has the highest NOS1 activity within the kidney. Hence, we hypothesized that HS intake provokes HDAC1 activation of NO production in the IM. HS intake for 1 wk significantly increased HDAC1 abundance in the IM. Ex vivo treatment of dissociated IM from HS-fed mice with a selective HDAC1 inhibitor (MS-275) decreased NO production with no change in ET-1 peptide or mRNA levels. We further investigated the role of the ET-1/ETBR/NOS1ß signaling pathway with chronic ETBR blockade (A-192621). Although NO was decreased and ET-1 levels were elevated in the dissociated IM from HS-fed mice treated with A-192621, ex vivo MS-275 did not further change NO or ET-1 levels suggesting that HDAC1-mediated NO production is regulated at the level or downstream of ETBR activation. In split-open CDs from HS-fed mice, patch clamp analysis revealed significantly higher ENaC activity after MS-275 pretreatment, which was abrogated by an exogenous NO donor. Moreover, flow-induced increases in mIMCD-3 cell NO production were blunted by HDAC1 or calcium inhibition. Taken together, these findings indicate that HS intake induces HDAC1-dependent activation of the ETBR/NO pathway contributing to the natriuretic response.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Túbulos Renales Colectores/enzimología , Natriuresis , Óxido Nítrico/metabolismo , Eliminación Renal , Cloruro de Sodio Dietético/administración & dosificación , Animales , Endotelina-1/metabolismo , Masculino , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo I/metabolismo , Receptor de Endotelina B/metabolismo , Transducción de Señal , Cloruro de Sodio Dietético/orina
9.
Cancers (Basel) ; 12(8)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752278

RESUMEN

Cisplatin (CDDP) is an important anticancer drug. A common side effect of CDDP is renal salt and water-wasting syndrome (RSWS). The origin of RSWS is obscure. Emerging evidence, though, suggests that broad inhibition of sodium transport proteins by CDDP may result in decreases in tubular reabsorption, causing increases in sodium and water excretion. In this sense, CDDP would be acting like a diuretic. The effect of CDDP on the epithelial Na+ channel (ENaC), which is the final arbiter fine-tuning renal Na+ excretion, is unknown. We test here whether CDDP affects ENaC to promote renal salt and water excretion. The effects of CDDP and benzamil (BZM), a blocker of ENaC, on excretion of a sodium load were quantified. Similar to BZM, CDDP facilitated renal Na+ excretion. To directly quantify the effects on ENaC, principal cells in split-open tubules were patch clamped. CDDP, at doses comparable to those used for chemotherapy (1.5 µM), significantly decreased ENaC activity in native tubules. To further elaborate on this mechanism, the dose-dependent effects of CDDP on mouse ENaC (mENaC) heterologously expressed in Chinese Hamster Ovary (CHO) cells were tested using patch clamping. As in native tubules, CDDP significantly decreased the activity of mENaC expressed in CHO cells. Dose-response curves and competition with amiloride identified CDDP as a weak inhibitor of ENaC (apparent IC50 = 1 µM) that competes with amiloride for inhibition of the channel, weakening the inhibitory actions of the latter. Such observations are consistent with CDDP being a partial modulator of ENaC, which possibly has a binding site that overlaps with that of amiloride. These findings are consistent with inhibition of ENaC by CDDP contributing to the RSWS caused by this important chemotherapy drug.

10.
Am J Physiol Renal Physiol ; 316(4): F758-F767, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30724104

RESUMEN

Stimulation of metabotropic Gq-coupled purinergic P2Y2 receptors decreases activity of the epithelial Na+ channel (ENaC) in renal principal cells of the distal nephron. The physiological consequences of P2Y2 receptor signaling disruption in the P2Y2 receptor knockout mouse are decreased Na+ excretion and increased arterial blood pressure. However, because of the global nature of this knockout model, the quantitative contribution of ENaC and distal nephron compared with that of upstream renal vascular and tubular elements to changes in urinary excretion and arterial blood pressure is obscure. Moreover, it is uncertain whether stimulation of P2Y2 receptor inhibition of ENaC is sufficient to drive renal (urinary) Na+ excretion (UNaV). Here, using a pharmacogenetic approach and selective agonism of the P2Y2 receptor, we test the sufficiency of targeted stimulation of Gq signaling in principal cells of the distal nephron and P2Y2 receptors to increase UNaV. Selective stimulation of the P2Y2 receptor with the ligand MRS2768 decreased ENaC activity in freshly isolated tubules (as assessed by patch-clamp electrophysiology) and increased UNaV (as assessed in metabolic cages). Similarly, selective agonism of hM3Dq-designer receptors exclusively activated by designer drugs (DREADD) restrictively expressed in principal cells of the distal nephron with clozapine- N-oxide decreased ENaC activity and, consequently, increased UNaV. Clozapine- N-oxide, when applied to control littermates, failed to affect ENaC and UNaV. This study represents the first use of pharmacogenetic (DREADD) technology in the renal tubule and demonstrated that selective activation of the P2Y2 receptor and Gq signaling in principal cells is sufficient to promote renal salt excretion.


Asunto(s)
Riñón/metabolismo , Farmacogenética , Receptores Purinérgicos P2Y2/efectos de los fármacos , Receptores Purinérgicos P2Y2/genética , Sodio/orina , Animales , Canales Epiteliales de Sodio/efectos de los fármacos , Canales Epiteliales de Sodio/genética , Femenino , Túbulos Renales/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Túbulos Renales Colectores/metabolismo , Masculino , Ratones , Ratones Noqueados , Nefronas/metabolismo , Agonistas del Receptor Purinérgico P2Y/farmacología , Transducción de Señal/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Cloruro de Sodio/metabolismo
11.
J Biochem Mol Toxicol ; 32(12): e22225, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30290022

RESUMEN

Toxicological research of novel nanomaterials is a major developmental step of their clinical approval. Since iron oxide magnetic nanoparticles have a great potential in cancer treatment and diagnostics, the investigation of their toxic properties is very topical. In this paper we synthesized bovine serum albumin-coated iron oxide nanoparticles with different sizes and their polyethylene glycol derivative. To prove high biocompatibility of obtained nanoparticles the number of in vitro toxicological tests on human fibroblasts and U251 glioblastoma cells was performed. It was shown that albumin nanoparticles' coating provides a stable and biocompatible shell and prevents cytotoxicity of magnetite core. On long exposure times (48 hours), cytotoxicity of iron oxide nanoparticles takes place due to free radical production, but this toxic effect may be neutralized by using polyethylene glycol modification.


Asunto(s)
Materiales Biocompatibles Revestidos/toxicidad , Compuestos Férricos/toxicidad , Nanopartículas/toxicidad , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Ensayo Cometa , Compuestos Férricos/química , Fibroblastos/efectos de los fármacos , Glioblastoma/patología , Humanos , Nanopartículas/química , Tamaño de la Partícula , Polietilenglicoles/química , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica Bovina/química
12.
Am J Physiol Renal Physiol ; 315(3): F607-F617, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29790390

RESUMEN

The collecting duct is the predominant nephron site of prorenin and prorenin receptor (PRR) expression. We previously demonstrated that the collecting duct PRR regulates epithelial Na+ channel (ENaC) activity and water transport; however, which cell type is involved remains unclear. Herein, we examined the effects of principal cell (PC) or intercalated cell (IC) PRR deletion on renal Na+ and water handling. PC or IC PRR knockout (KO) mice were obtained by crossing floxed PRR mice with mice harboring Cre recombinase under the control of the AQP2 or B1 subunit of the H+ ATPase promoters, respectively. PC KO mice had reduced renal medullary ENaC-α abundance and increased urinary Na+ losses on a low-Na+ diet compared with controls. Conversely, IC KO mice had no apparent differences in Na+ balance or ENaC abundance compared with controls. Acute treatment with prorenin increased ENaC channel number and open probability in acutely isolated cortical collecting ducts from control and IC PRR KO, but not PC PRR KO, mice. Furthermore, compared with controls, PC KO, but not IC KO mice, had increased urine volume, reduced urine osmolality, and reduced abundance of renal medullary AQP2. Taken together, these findings indicate that PC, but not IC, PRR modulates ENaC activity, urinary Na+ excretion, and water transport.


Asunto(s)
Agua Corporal/metabolismo , Túbulos Renales Colectores/metabolismo , Natriuresis , ATPasas de Translocación de Protón/metabolismo , Receptores de Superficie Celular/metabolismo , Sodio/orina , Equilibrio Hidroelectrolítico , Animales , Acuaporina 2/genética , Canales Epiteliales de Sodio/metabolismo , Femenino , Genotipo , Túbulos Renales Colectores/citología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Concentración Osmolar , Fenotipo , Regiones Promotoras Genéticas , ATPasas de Translocación de Protón/deficiencia , ATPasas de Translocación de Protón/genética , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Eliminación Renal , Reabsorción Renal , ATPasas de Translocación de Protón Vacuolares/genética
13.
Am J Physiol Renal Physiol ; 314(3): F367-F372, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29021227

RESUMEN

epithelial Na+ channel, ENaC, is the final arbiter of sodium excretion in the kidneys. As such, discretionary control of ENaC by hormones is critical to the fine-tuning of electrolyte and water excretion and, consequently, blood pressure. Casein kinase 2 (CK2) phosphorylates ENaC. Phosphorylation by CK2 is necessary for normal ENaC activity. We tested the physiological importance of CK2 regulation of ENaC as the degree to which ENaC activity is dependent on CK2 phosphorylation in the living organism is unknown. This was addressed using patch-clamp analysis of ENaC in completely split-open collecting ducts and whole animal physiological studies of sodium excretion in mice. We also used ENaC-harboring CK2 phosphorylation site mutations to elaborate the mechanism. We found that ENaC activity in ex vivo preparations of murine collecting duct had a significant decrease in activity in response to selective antagonism of CK2. In whole animal experiments selective antagonism of CK2 caused a natriuresis similar to benzamil, but not additive to benzamil, suggesting an ENaC-dependent mechanism. Regulation of ENaC by CK2 was abolished by mutation of the canonical CK2 phosphorylation sites in beta and gamma ENaC. Together, these results demonstrate that the appropriate regulation of ENaC by CK2 is necessary for the normal physiological role played by this key renal ion channel in the fine-tuning of sodium excretion.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Colectores/enzimología , Natriuresis , Sodio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Células CHO , Quinasa de la Caseína II/antagonistas & inhibidores , Cricetulus , Bloqueadores del Canal de Sodio Epitelial/farmacología , Canales Epiteliales de Sodio/efectos de los fármacos , Canales Epiteliales de Sodio/genética , Túbulos Renales Colectores/efectos de los fármacos , Potenciales de la Membrana , Ratones , Mutación , Natriuresis/efectos de los fármacos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Triazoles/farmacología
14.
J Am Heart Assoc ; 6(10)2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29066445

RESUMEN

BACKGROUND: During high sodium intake, the renin-angiotensin-aldosterone system is downregulated and nitric oxide signaling is upregulated in order to remain in sodium balance. Recently, we showed that collecting duct nitric oxide synthase 1ß is critical for fluid-electrolyte balance and subsequently blood pressure regulation during high sodium feeding. The current study tested the hypothesis that high sodium activation of the collecting duct nitric oxide synthase 1ß pathway is critical for maintaining sodium homeostasis and for the downregulation of the renin-angiotensin-aldosterone system-epithelial sodium channel axis. METHODS AND RESULTS: Male control and collecting duct nitric oxide synthase 1ß knockout (CDNOS1KO) mice were placed on low, normal, and high sodium diets for 1 week. In response to the high sodium diet, plasma sodium was significantly increased in control mice and to a significantly greater level in CDNOS1KO mice. CDNOS1KO mice did not suppress plasma aldosterone in response to the high sodium diet, which may be partially explained by increased adrenal AT1R expression. Plasma renin concentration was appropriately suppressed in both genotypes. Furthermore, CDNOS1KO mice had significantly higher intrarenal angiotensin II with high sodium diet, although intrarenal angiotensinogen levels and angiotensin-converting enzyme activity were similar between knockout mice and controls. In agreement with inappropriate renin-angiotensin-aldosterone system activation in the CDNOS1KO mice on a high sodium diet, epithelial sodium channel activity and sodium transporter abundance were significantly higher compared with controls. CONCLUSIONS: These data demonstrate that high sodium activation of collecting duct nitric oxide synthase 1ß signaling induces suppression of systemic and intrarenal renin-angiotensin-aldosterone system, thereby modulating epithelial sodium channel and other sodium transporter abundance and activity to maintain sodium homeostasis.


Asunto(s)
Aldosterona/sangre , Angiotensina II/sangre , Túbulos Renales Colectores/enzimología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Eliminación Renal , Sistema Renina-Angiotensina , Cloruro de Sodio Dietético/metabolismo , Animales , Activación Enzimática , Canales Epiteliales de Sodio/metabolismo , Genotipo , Homeostasis , Masculino , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo I/deficiencia , Óxido Nítrico Sintasa de Tipo I/genética , Fenotipo , Receptor de Angiotensina Tipo 1/metabolismo , Renina/sangre , Simportadores del Cloruro de Sodio/metabolismo
15.
Kidney Int ; 92(4): 786-787, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28938949

RESUMEN

Under most conditions, loop diuretics are K+-wasting, requiring potassium supplementation. In this issue, Wang and colleagues demonstrate that in mice fed a low-Na+, high-K+ diet, loop diuretics, in contrast, are K+-sparing. This observation suggests that possible elevations in plasma K+ should be monitored when using a loop diuretic with a low-Na+, high-K+ diet, particularly when in combination with a potassium supplement.


Asunto(s)
Diuréticos , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico , Animales , Dieta , Ratones , Potasio , Sodio
16.
Am J Physiol Renal Physiol ; 312(6): F1073-F1080, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28179253

RESUMEN

Modulation of the epithelial Na+ channel (ENaC) activity in the collecting duct (CD) is an important mechanism for normal Na+ homeostasis. ENaC activity is inversely related to dietary Na+ intake, in part due to inhibitory paracrine purinergic regulation. Evidence suggests that H+,K+-ATPase activity in the CD also influences Na+ excretion. We hypothesized that renal H+,K+-ATPases affect Na+ reabsorption by the CD by modulating ENaC activity. ENaC activity in HKα1 H+,K+-ATPase knockout (HKα1-/-) mice was uncoupled from Na+ intake. ENaC activity on a high-Na+ diet was greater in the HKα1-/- mice than in WT mice. Moreover, dietary Na+ content did not modulate ENaC activity in the HKα1-/- mice as it did in WT mice. Purinergic regulation of ENaC was abnormal in HKα1-/- mice. In contrast to WT mice, where urinary [ATP] was proportional to dietary Na+ intake, urinary [ATP] did not increase in response to a high-Na+ diet in the HKα1-/- mice and was significantly lower than in the WT mice. HKα1-/- mice fed a high-Na+ diet had greater Na+ retention than WT mice and had an impaired dipsogenic response. These results suggest an important role for the HKα1 subunit in the regulation of purinergic signaling in the CD. They are also consistent with HKα1-containing H+,K+-ATPases as important components for the proper regulation of Na+ balance and the dipsogenic response to a high-salt diet. Such observations suggest a previously unrecognized element in Na+ regulation in the CD.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/deficiencia , Túbulos Renales Colectores/enzimología , Eliminación Renal , Reabsorción Renal , Sodio en la Dieta/metabolismo , Adenosina Trifosfato/orina , Aldosterona/sangre , Animales , Genotipo , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , Homeostasis , Hipernatremia/sangre , Hipernatremia/enzimología , Hipernatremia/genética , Hipernatremia/orina , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Transducción de Señal , Factores de Tiempo , Vasopresinas/sangre
17.
Am J Physiol Renal Physiol ; 311(1): F186-94, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27053687

RESUMEN

The physiological significance of the renal tubular prorenin receptor (PRR) has been difficult to elucidate due to developmental abnormalities associated with global or renal-specific PRR knockout (KO). We recently developed an inducible renal tubule-wide PRR KO using the Pax8/LC1 transgenes and demonstrated that disruption of renal tubular PRR at 1 mo of age caused no renal histological abnormalities. Here, we examined the role of renal tubular PRR in blood pressure (BP) regulation and Na(+) excretion and investigated the signaling mechanisms by which PRR regulates Na(+) balance. No detectable differences in BP were observed between control and PRR KO mice fed normal- or low-Na(+) diets. However, compared with controls, PRR KO mice had elevated plasma renin concentration and lower cumulative Na(+) balance with normal- and low-Na(+) intake. PRR KO mice had an attenuated hypertensive response and reduced Na(+) retention following angiotensin II (ANG II) infusion. Furthermore, PRR KO mice had significantly lower epithelial Na(+) channel (ENaC-α) expression. Treatment with mouse prorenin increased, while PRR antagonism decreased, ENaC activity in isolated split-open collecting ducts (CD). The prorenin effect was prevented by protein kinase A and Akt inhibition, but unaffected by blockade of AT1, ERK1/2, or p38 MAPK pathways. Taken together, these data indicate that renal tubular PRR, likely via direct prorenin/renin stimulation of PKA/Akt-dependent pathways, stimulates CD ENaC activity. Absence of renal tubular PRR promotes Na(+) wasting and reduces the hypertensive response to ANG II.


Asunto(s)
Presión Sanguínea/fisiología , Células Epiteliales/metabolismo , Túbulos Renales/metabolismo , Receptores de Superficie Celular/biosíntesis , Sodio/metabolismo , Angiotensina II/farmacología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Dieta Hiposódica , Canales Epiteliales de Sodio/metabolismo , Túbulos Renales/citología , Túbulos Renales Colectores/efectos de los fármacos , Túbulos Renales Colectores/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Noqueados , Proteína Oncogénica v-akt/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Sodio en la Dieta/farmacología , Receptor de Prorenina
18.
Arch Biochem Biophys ; 591: 87-97, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26714302

RESUMEN

Myeloperoxidase (MPO) is an oxidant-producing enzyme that can also bind to cellular surface proteins. We found that band 3 protein and glycophorins A and B were the key MPO-binding targets of human red blood cells (RBCs). The interaction of MPO with RBC proteins was mostly electrostatic in nature because it was inhibited by desialation, exogenic sialic acid, high ionic strength, and extreme pH. In addition, MPO failed to interfere with the lectin-induced agglutination of RBCs, suggesting a minor role of glycan-recognizing mechanisms in MPO binding. Multiple biophysical properties of RBCs were altered in the presence of native (i.e., not hypochlorous acid-damaged) MPO. These changes included transmembrane potential, availability of intracellular Ca(2+), and lipid organization in the plasma membrane. MPO-treated erythrocytes became larger in size, structurally more rigid, and hypersensitive to acidic and osmotic hemolysis. Furthermore, we found a significant correlation between the plasma MPO concentration and RBC rigidity index in type-2 diabetes patients with coronary heart disease. These findings suggest that MPO functions as a mediator of novel regulatory mechanism in microcirculation, indicating the influence of MPO-induced abnormalities on RBC deformability under pathological stress conditions.


Asunto(s)
Membrana Eritrocítica/metabolismo , Eritrocitos/citología , Eritrocitos/fisiología , Hemólisis/fisiología , Fluidez de la Membrana/fisiología , Peroxidasa/metabolismo , Sitios de Unión , Tamaño de la Célula , Células Cultivadas , Membrana Eritrocítica/ultraestructura , Humanos , Potenciales de la Membrana/fisiología , Unión Proteica
19.
Artículo en Inglés | MEDLINE | ID: mdl-26653978

RESUMEN

The study aimed to reveal cancer related mutations in DNA repair and cell cycle genes associated with chronic occupational exposure to gamma-radiation in personnel of the Siberian Group of Chemical Enterprises (SGCE). Mutations were analyzed by comparing genotypes of malignant tumors and matched normal tissues of 255 cancer patients including 98 exposed to external gamma-radiation (mean dose 128.1±150.5mSv). Also a genetic association analysis was carried out in a sample of 149 cancer patients and 908 healthy controls occupationally exposed to gamma-radiation (153.2±204.6mSv and 150.5±211.2mSv, respectively). Eight SNPs of genes of DNA excision repair were genotyped (rs13181, rs1052133, rs1042522, rs2305427, rs4244285, rs1045642, rs1805419 and rs1801133). The mutation profiles in heterozygous loci for selected SNP were different between sporadic tumors and tumors in patients exposed to radiation. In sporadic tumors, heterozygous genotype Arg/Pro of the rs1042522 SNP mutated into Arg/0 in 15 cases (9.6%) and 0/Pro in 14 cases (8.9%). The genotype Lys/Gln of the rs13181 SNP mutated into Lys/0 and 0/Gln in 9 and 4 cases, respectively. In tumors of patients exposed to low-level radiation, the rs1042522 Arg/0 mutated genotype was found in 12 cases (12.1%), while in 2 cases (2%) 0/Pro mutation was observed. Finally, the rs13181 0/Gln mutated genotype was observed in 15 cases (16,5%) . Thus, our study showed the difference in patterns of allelic imbalance in tumors appeared under low-level radiation exposure and spontaneous tumors for selected SNPs. This suggests different mechanisms of inactivation of heterozygous genotypes in sporadic and radiation-induced tumors.


Asunto(s)
Desequilibrio Alélico , Rayos gamma/efectos adversos , Neoplasias/genética , Exposición Profesional/efectos adversos , Adulto , Anciano , Estudios de Casos y Controles , Reparación del ADN , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Sitios Genéticos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/etiología , Polimorfismo de Nucleótido Simple
20.
Biopreserv Biobank ; 13(2): 72-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25574933

RESUMEN

Collection and storage of biological specimens in biobanks aims to obtain and preserve samples of different kinds for biological and medical studies. Here we present a description of the Bank of Biological Materials (BBM) housed by the Seversk Biophysical Research Centre (SBRC; Seversk, Russia). The main goal of maintaining the BBM is to collect and store biological samples suitable for genetic studies of people exposed to long-term ionizing radiation. Currently, the collection includes 19,194 biological specimens obtained from 8105 donors, of whom 42.3% are diagnosed with malignant neoplasms, 28.7% are healthy residents of the city of Seversk, 18.8% are healthy employees of the Siberian Group of Chemical Enterprises (SGCE), and 10.2% are patients diagnosed with acute myocardial infarction. The donors were enrolled using the Regional Medical and Dosimetric Register database created by the SBRC. For each donor, DNA specimens were extracted from peripheral blood and tissues and cell suspensions for cytogenetic analysis were prepared routinely. The BBM's unique collection is suitable primarily for studies of individual radiosensitivity of humans (IRH), and genetic aspects of the pathophysiology of common human diseases, especially in populations exposed to long-term low-dose ionizing radiation.


Asunto(s)
Bancos de Muestras Biológicas , ADN/efectos de la radiación , Manejo de Especímenes/métodos , Bancos de Muestras Biológicas/organización & administración , Voluntarios Sanos , Humanos , Neoplasias/etiología , Neoplasias/genética , Neoplasias/patología , Exposición Profesional , Radiación Ionizante , Factores de Riesgo , Federación de Rusia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...