Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
bioRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38746338

RESUMEN

Major Depressive Disorder (MDD) poses a significant public health challenge due to its high prevalence and the substantial burden it places on individuals and healthcare systems. Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) shows promise as a treatment for this disorder, although its mechanisms of action remain unclear. This study investigated whole-brain response patterns during rtfMRI-NF training to explain interindividual variability in clinical efficacy in MDD. We analyzed data from 95 participants (67 active, 28 control) with MDD from previous rtfMRI-NF studies designed to increase left amygdala activation through positive autobiographical memory recall. Significant symptom reduction was observed in the active group (t=-4.404, d=-0.704, p<0.001) but not in the control group (t=-1.609, d=-0.430, p=0.111). However, left amygdala activation did not account for the variability in clinical efficacy. To elucidate the brain training process underlying the clinical effect, we examined whole-brain activation patterns during two critical phases of the neurofeedback procedure: activation during the self-regulation period, and transient responses to feedback signal presentations. Using a systematic process involving feature selection, manifold extraction, and clustering with cross-validation, we identified two subtypes of regulation activation and three subtypes of brain responses to feedback signals. These subtypes were significantly associated with the clinical effect (regulation subtype: F=8.735, p=0.005; feedback response subtype: F=5.326, p=0.008; subtypes' interaction: F=3.471, p=0.039). Subtypes associated with significant symptom reduction were characterized by selective increases in control regions, including lateral prefrontal areas, and decreases in regions associated with self-referential thinking, such as default mode areas. These findings suggest that large-scale brain activity during training is more critical for clinical efficacy than the level of activation in the neurofeedback target region itself. Tailoring neurofeedback training to incorporate these patterns could significantly enhance its therapeutic efficacy.

2.
medRxiv ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38766116

RESUMEN

Background: Brooding is a critical symptom and prognostic factor of major depressive disorder (MDD), which involves passively dwelling on self-referential dysphoria and related abstractions. The neurobiology of brooding remains under characterized. We aimed to elucidate neural dynamics underlying brooding, and explore their responses to neurofeedback intervention in MDD. Methods: We investigated functional MRI (fMRI) dynamic functional network connectivity (dFNC) in 36 MDD subjects and 26 healthy controls (HCs) during rest and brooding. Rest was measured before and after fMRI neurofeedback (MDD-active/sham: n=18/18, HC-active/sham: n=13/13). Baseline brooding severity was recorded using Ruminative Response Scale - Brooding subscale (RRS-B). Results: Four recurrent dFNC states were identified. Measures of time spent were not significantly different between MDD and HC for any of these states during brooding or rest. RRS-B scores in MDD showed significant negative correlation with measures of time spent in dFNC state 3 during brooding (r=-0.5, p= 1.7E-3, FDR-significant). This state comprises strong connections spanning several brain systems involved in sensory, attentional and cognitive processing. Time spent in this anti-brooding dFNC state significantly increased following neurofeedback only in the MDD active group (z=-2.09, p=0.037). Limitations: The sample size was small and imbalanced between groups. Brooding condition was not examined post-neurofeedback. Conclusion: We identified a densely connected anti-brooding dFNC brain state in MDD. MDD subjects spent significantly longer time in this state after active neurofeedback intervention, highlighting neurofeedback's potential for modulating dysfunctional brain dynamics to treat MDD.

3.
Neurosci Biobehav Rev ; 161: 105680, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641091

RESUMEN

Empathic communication between a patient and therapist is an essential component of psychotherapy. However, finding objective neural markers of the quality of the psychotherapeutic relationship have been elusive. Here we conceptualize how a neuroscience-informed approach involving real-time neurofeedback, facilitated via existing functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) technologies, could provide objective information for facilitating therapeutic rapport. We propose several neurofeedback-assisted psychotherapy (NF-AP) approaches that could be studied as a way to optimize the experience of the individual patient and therapist across the spectrum of psychotherapeutic treatment. Finally, we consider how the possible strengths of these approaches are balanced by their current limitations and discuss the future prospects of NF-AP.


Asunto(s)
Neurorretroalimentación , Psicoterapia , Humanos , Neurorretroalimentación/fisiología , Neurorretroalimentación/métodos , Psicoterapia/métodos , Relaciones Profesional-Paciente , Comunicación , Electroencefalografía , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen
4.
J Psychiatr Res ; 168: 184-192, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37913745

RESUMEN

BACKGROUND: Repetitive negative thinking (RNT), often referred to as rumination in the mood disorders literature, is a symptom dimension associated with poor prognosis and suicide in major depressive disorder (MDD). Given the transdiagnostic nature of RNT, this study aimed to evaluate the hypothesis that neurobiological substrates of RNT in MDD may share the brain mechanisms underlying obsessions, particularly those involving cortico-striatal-thalamic-cortical (CSTC) circuits. METHODS: Thirty-nine individuals with MDD underwent RNT induction during fMRI. Trait-RNT was measured by the Ruminative Response Scale (RRS) and state-RNT was measured by a visual analogue scale. We employed a connectome-wide association analysis examining the association between RNT intensity with striatal and thalamic connectivity. RESULTS: A greater RRS score was associated with hyperconnectivity of the right mediodorsal thalamus with prefrontal cortex, including lateral orbitofrontal cortex, along with Wernicke's area and posterior default mode network nodes (t = 4.66-6.70). A greater state-RNT score was associated with hyperconnectivity of the right laterodorsal thalamus with bilateral primary sensory and motor cortices, supplementary motor area, and Broca's area (t = 4.51-6.57). Unexpectedly, there were no significant findings related to the striatum. CONCLUSIONS: The present results suggest RNT in MDD is subserved by abnormal connectivity between right thalamic nuclei and cortical regions involved in both visceral and higher order cognitive processing. Emerging deep-brain neuromodulation methods may be useful to establish causal relationships between dysfunction of right thalamic-cortical circuits and RNT in MDD.


Asunto(s)
Trastorno Depresivo Mayor , Pesimismo , Humanos , Encéfalo , Corteza Prefrontal/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética
5.
J Affect Disord ; 340: 843-854, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37582464

RESUMEN

Resting-state functional connectivity (RSFC) has been proposed as a potential indicator of repetitive negative thinking (RNT) in depression. However, identifying the specific functional process associated with RSFC alterations is challenging, and it remains unclear whether alterations in RSFC for depressed individuals are directly related to the RNT process or to individual characteristics distinct from the negative thinking process per se. To investigate the relationship between RSFC alterations and the RNT process in individuals with major depressive disorder (MDD), we compared RSFC with functional connectivity during an induced negative-thinking state (NTFC) in terms of their predictability of RNT traits and associated whole-brain connectivity patterns using connectome-based predictive modeling (CPM) and connectome-wide association (CWA) analyses. Thirty-six MDD participants and twenty-six healthy control participants underwent both resting state and induced negative thinking state fMRI scans. Both RSFC and NTFC distinguished between healthy and depressed individuals with CPM. However, trait RNT in depressed individuals, as measured by the Ruminative Responses Scale-Brooding subscale, was only predictable from NTFC, not from RSFC. CWA analysis revealed that negative thinking in depression was associated with higher functional connectivity between the default mode and executive control regions, which was not observed in RSFC. These findings suggest that RNT in depression involves an active mental process encompassing multiple brain regions across functional networks, which is not represented in the resting state. Although RSFC indicates brain functional alterations in MDD, they may not directly reflect the negative thinking process.


Asunto(s)
Conectoma , Trastorno Depresivo Mayor , Pesimismo , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Depresión/diagnóstico por imagen , Imagen por Resonancia Magnética , Función Ejecutiva
6.
bioRxiv ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-36993382

RESUMEN

Resting-state functional connectivity (RSFC) has been proposed as a potential indicator of repetitive negative thinking (RNT) in depression. However, identifying the specific functional process associated with RSFC alterations is challenging, and it remains unclear whether alterations in RSFC for depressed individuals are directly related to the RNT process or to individual characteristics distinct from the negative thinking process per se. To investigate the relationship between RSFC alterations and the RNT process in individuals with major depressive disorder (MDD), we compared RSFC with functional connectivity during an induced negative-thinking state (NTFC) in terms of their predictability of RNT traits and associated whole-brain connectivity patterns using connectome-based predictive modeling (CPM) and connectome-wide association (CWA) analyses. Thirty-six MDD participants and twenty-six healthy control participants underwent both resting state and induced negative thinking state fMRI scans. Both RSFC and NTFC distinguished between healthy and depressed individuals with CPM. However, trait RNT in depressed individuals, as measured by the Ruminative Responses Scale-Brooding subscale, was only predictable from NTFC, not from RSFC. CWA analysis revealed that negative thinking in depression was associated with higher functional connectivity between the default mode and executive control regions, which was not observed in RSFC. These findings suggest that RNT in depression involves an active mental process encompassing multiple brain regions across functional networks, which is not represented in the resting state. Although RSFC indicates brain functional alterations in MDD, they may not directly reflect the negative thinking process.

7.
Psychother Psychosom ; 92(2): 87-100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36630946

RESUMEN

INTRODUCTION: Repetitive negative thinking (RNT) is a cognitive process focusing on self-relevant and negative experiences, leading to a poor prognosis of major depressive disorder (MDD). We previously identified that connectivity between the precuneus/posterior cingulate cortex (PCC) and right temporoparietal junction (rTPJ) was positively correlated with levels of RNT. OBJECTIVE: In this double-blind, randomized, sham-controlled, proof-of-concept trial, we employed real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) to delineate the neural processes that may be causally linked to RNT and could potentially become treatment targets for MDD. METHODS: MDD-affected individuals were assigned to either active (n = 20) or sham feedback group (n = 19). RNT was measured by the Ruminative Response Scale-brooding subscale (RRS-B) before and 1 week after the intervention. RESULTS: Individuals in the active but not in the sham group showed a significant reduction in the RRS-B; however, a greater reduction in the PCC-rTPJ connectivity was unrelated to a greater reduction in the RRS-B. Exploratory analyses revealed that a greater reduction in the retrosplenial cortex (RSC)-rTPJ connectivity yielded a more pronounced reduction in the RRS-B in the active but not in the sham group. CONCLUSIONS: RtfMRI-nf was effective in reducing RNT. Considering the underlying mechanism of rtfMIR-nf, the RSC and rTPJ could be part of a network (i.e., default mode network) that might collectively affect the intensity of RNT. Understanding the relationship between the functional organization of targeted neural changes and clinical metrics, such as RNT, has the potential to guide the development of mechanism-based treatment of MDD.


Asunto(s)
Trastorno Depresivo Mayor , Neurorretroalimentación , Pesimismo , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Neurorretroalimentación/métodos , Depresión , Imagen por Resonancia Magnética/métodos
8.
Psychol Med ; 53(12): 5488-5499, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36043367

RESUMEN

BACKGROUND: Repetitive negative thinking (RNT), a cognitive process that encompasses past (rumination) and future (worry) directed thoughts focusing on negative experiences and the self, is a transdiagnostic construct that is especially relevant for major depressive disorder (MDD). Severe RNT often occurs in individuals with severe levels of MDD, which makes it challenging to disambiguate the neural circuitry underlying RNT from depression severity. METHODS: We used a propensity score, i.e., a conditional probability of having high RNT given observed covariates to match high and low RNT individuals who are similar in the severity of depression, anxiety, and demographic characteristics. Of 148 MDD individuals, we matched high and low RNT groups (n = 50/group) and used a data-driven whole-brain voxel-to-voxel connectivity pattern analysis to investigate the resting-state functional connectivity differences between the groups. RESULTS: There was an association between RNT and connectivity in the bilateral superior temporal sulcus (STS), an important region for speech processing including inner speech. High relative to low RNT individuals showed greater connectivity between right STS and bilateral anterior insular cortex (AI), and between bilateral STS and left dorsolateral prefrontal cortex (DLPFC). Greater connectivity in those regions was specifically related to RNT but not to depression severity. CONCLUSIONS: RNT intensity is directly related to connectivity between STS and AI/DLPFC. This might be a mechanism underlying the role of RNT in perceptive, cognitive, speech, and emotional processing. Future investigations will need to determine whether modifying these connectivities could be a treatment target to reduce RNT.


Asunto(s)
Trastorno Depresivo Mayor , Regulación Emocional , Pesimismo , Humanos , Trastorno Depresivo Mayor/psicología , Depresión/psicología , Pesimismo/psicología , Semántica , Encuestas y Cuestionarios , Ansiedad/psicología
9.
Brain Behav ; 12(10): e2667, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36134450

RESUMEN

Recent studies suggest that transcranial electrical stimulation (tES) can be performed during functional magnetic resonance imaging (fMRI). The novel approach of using concurrent tES-fMRI to modulate and measure targeted brain activity/connectivity may provide unique insights into the causal interactions between the brain neural responses and psychiatric/neurologic signs and symptoms, and importantly, guide the development of new treatments. However, tES stimulation parameters to optimally influence the underlying brain activity may vary with respect to phase difference, frequency, intensity, and electrode's montage among individuals. Here, we propose a protocol for closed-loop tES-fMRI to optimize the frequency and phase difference of alternating current stimulation (tACS) for two nodes (frontal and parietal regions) in individual participants. We carefully considered the challenges in an online optimization of tES parameters with concurrent fMRI, specifically in its safety, artifact in fMRI image quality, online evaluation of the tES effect, and parameter optimization method, and we designed the protocol to run an effective study to enhance frontoparietal connectivity and working memory performance with the optimized tACS using closed-loop tES-fMRI. We provide technical details of the protocol, including electrode types, electrolytes, electrode montages, concurrent tES-fMRI hardware, online fMRI processing pipelines, and the optimization algorithm. We confirmed the implementation of this protocol worked successfully with a pilot experiment.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Artefactos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Estimulación Transcraneal de Corriente Directa/métodos
10.
Front Hum Neurosci ; 16: 910951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721350

RESUMEN

Real-time fMRI (rt-fMRI) neurofeedback can be used to non-invasively modulate brain activity and has shown initial effectiveness in symptom reduction for psychiatric disorders. Neurofeedback paradigms often target the neurocircuitry underlying emotion regulation, as difficulties with emotion regulation are common across many psychiatric conditions. Adolescence is a key period for the development of emotion regulation, with the parent-adolescent relationship providing an important context for learning how to modulate one's emotions. Here, we present evidence for a novel extension of rt-fMRI neurofeedback wherein a second person (the parent) views neurofeedback from the focal participant (adolescent) and attempts to regulate the other person's brain activity. In this proof-of-concept study, mother-adolescent dyads (n = 6; all female) participated in a dyadic neurofeedback protocol, during which they communicated via active noise-canceling microphones and headphones. During the scan, adolescents described current emotionally upsetting situations in their lives, and their mothers responded while viewing neurofeedback from the adolescent's right anterior insular cortex (aIC)-a key hub for emotion-related processing. The mother was instructed to supportively respond to her daughter's negative emotions and attempt to downregulate the aIC activity. Mean right aIC activation during each run was calculated for each adolescent participant, and results revealed a downward trend across the session (ß = -0.17, SE ß = 0.19, Cohen's f 2 = 0.03). Results of this proof-of-concept study support further research using dyadic neurofeedback to target emotion-related processing. Future applications may include therapist-client dyads and continued research with parents and children. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [NCT03929263].

11.
Front Neurosci ; 16: 834827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360171

RESUMEN

Real-time fMRI (rtfMRI) has enormous potential for both mechanistic brain imaging studies or treatment-oriented neuromodulation. However, the adaption of rtfMRI has been limited due to technical difficulties in implementing an efficient computational framework. Here, we introduce a python library for real-time fMRI (rtfMRI) data processing systems, Real-Time Processing System in python (RTPSpy), to provide building blocks for a custom rtfMRI application with extensive and advanced functionalities. RTPSpy is a library package including (1) a fast, comprehensive, and flexible online fMRI image processing modules comparable to offline denoising, (2) utilities for fast and accurate anatomical image processing to define an anatomical target region, (3) a simulation system of online fMRI processing to optimize a pipeline and target signal calculation, (4) simple interface to an external application for feedback presentation, and (5) a boilerplate graphical user interface (GUI) integrating operations with RTPSpy library. The fast and accurate anatomical image processing utility wraps external tools, including FastSurfer, ANTs, and AFNI, to make tissue segmentation and region of interest masks. We confirmed that the quality of the output masks was comparable with FreeSurfer, and the anatomical image processing could complete in a few minutes. The modular nature of RTPSpy provides the ability to use it for a simulation analysis to optimize a processing pipeline and target signal calculation. We present a sample script for building a real-time processing pipeline and running a simulation using RTPSpy. The library also offers a simple signal exchange mechanism with an external application using a TCP/IP socket. While the main components of the RTPSpy are the library modules, we also provide a GUI class for easy access to the RTPSpy functions. The boilerplate GUI application provided with the package allows users to develop a customized rtfMRI application with minimum scripting labor. The limitations of the package as it relates to environment-specific implementations are discussed. These library components can be customized and can be used in parts. Taken together, RTPSpy is an efficient and adaptable option for developing rtfMRI applications. Code available at: https://github.com/mamisaki/RTPSpy.

12.
Brain Sci ; 12(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35326319

RESUMEN

Mindfulness training (MT) reduces self-referential processing and promotes interoception, the perception of sensations from inside the body, by increasing one's awareness of and regulating responses to them. The posterior cingulate cortex (PCC) and the insular cortex (INS) are considered hubs for self-referential processing and interoception, respectively. Although MT has been consistently found to decrease PCC, little is known about how MT relates to INS activity. Understanding links between mindfulness and interoception may be particularly important for informing mental health in adolescence, when neuroplasticity and emergence of psychopathology are heightened. We examined INS activity during real-time functional magnetic resonance imaging neurofeedback-augmented mindfulness training (NAMT) targeting the PCC. Healthy adolescents (N = 37; 16 female) completed the NAMT task, including Focus-on-Breath (MT), Describe (self-referential processing), and Rest conditions, across three neurofeedback runs and two non-neurofeedback runs (Observe, Transfer). Regression coefficients estimated from the generalized linear model were extracted from three INS subregions: anterior (aINS), mid (mINS), and posterior (pINS). Mixed model analyses revealed the main effect of run for Focus-on-Breath vs. Describe contrast in aINS [R2 = 0.39] and pINS [R2 = 0.33], but not mINS [R2 = 0.34]. Post hoc analyses revealed greater aINS activity and reduced pINS activity during neurofeedback runs, and such activities were related to lower self-reported life satisfaction and less pain behavior, respectively. These findings revealed the specific involvement of insula subregions in rtfMRI-nf MT.

13.
Cogn Affect Behav Neurosci ; 22(4): 849-867, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35292905

RESUMEN

Mindfulness training (MT) promotes the development of one's ability to observe and attend to internal and external experiences with objectivity and nonjudgment with evidence to improve psychological well-being. Real-time functional MRI neurofeedback (rtfMRI-nf) is a noninvasive method of modulating activity of a brain region or circuit. The posterior cingulate cortex (PCC) has been hypothesized to be an important hub instantiating a mindful state. This nonrandomized, single-arm study examined the feasibility and tolerability of training typically developing adolescents to self-regulate the posterior cingulate cortex (PCC) using rtfMRI-nf during MT. Thirty-four adolescents (mean age: 15 years; 14 females) completed the neurofeedback augmented mindfulness training task, including Focus-on-Breath (MT), Describe (self-referential thinking), and Rest conditions, across three neurofeedback and two non-neurofeedback runs (Observe, Transfer). Self-report assessments demonstrated the feasibility and tolerability of the task. Neurofeedback runs differed significantly from non-neurofeedback runs for the Focus-on-Breath versus Describe contrast, characterized by decreased activity in the PCC during the Focus-on-Breath condition (z = -2.38 to -6.27). MT neurofeedback neural representation further involved the medial prefrontal cortex, anterior cingulate cortex, dorsolateral prefrontal cortex, posterior insula, hippocampus, and amygdala. State awareness of physical sensations increased following rtfMRI-nf and was maintained at 1-week follow-up (Cohens' d = 0.69). Findings demonstrate feasibility and tolerability of rtfMRI-nf in healthy adolescents, replicates the role of PCC in MT, and demonstrate a potential neuromodulatory mechanism to leverage and streamline the learning of mindfulness practice. ( ClinicalTrials.gov identifier #NCT04053582; August 12, 2019).


Asunto(s)
Atención Plena , Autocontrol , Adolescente , Estudios de Factibilidad , Femenino , Giro del Cíngulo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos
14.
Res Child Adolesc Psychopathol ; 50(2): 149-161, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35113308

RESUMEN

Parents' emotion socialization (ES) practices impact socioemotional development throughout adolescence. Little is known, however, regarding the neurobiology underlying these effects. This study used functional magnetic resonance imaging (fMRI) to examine how parent ES practices relate to adolescent brain function during emotion processing. Thirty-three adolescents (ages 14-16) reported on ES practices of a focal parent (primarily mothers) using the Emotions as a Child (EAC) Scale. Adolescents also completed a conflict discussion task with this parent, and parents' statements were coded for emotional valence. Adolescents performed two fMRI tasks: a standard emotion processing (EP) task (n = 32) and the Testing Emotional Attunement and Mutuality (TEAM) task (n = 27). The EP task consisted of viewing emotional pictures and either reacting naturally or using cognitive reappraisal to regulate emotional responses. The TEAM task was performed with the parent and included trials during which adolescents were shown that their parent made an error, costing the dyad $5. Parent negative verbalizations during the conflict discussion were associated with greater activity in the thalamus during the emotion reactivity condition of the EP task and in the thalamus, superior medial and superior frontal gyri, anterior insula, and dorsolateral prefrontal cortex during the costly error condition of the TEAM task. Unsupportive ES was associated with greater activity in the supplementary motor area and less activity in the paracentral gyrus and amygdala during the costly error condition of the TEAM task. This study supports the premise that ES influences adolescents' emotion-related neural processing, particularly when using ecologically valid tasks in social contexts.


Asunto(s)
Imagen por Resonancia Magnética , Socialización , Adolescente , Niño , Emociones/fisiología , Femenino , Humanos , Neurobiología , Padres/psicología
15.
J Neural Eng ; 18(6)2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34937003

RESUMEN

Objective.Electroencephalography (EEG) microstates (MSs), which reflect a large topographical representation of coherent electrophysiological brain activity, are widely adopted to study cognitive processes mechanisms and aberrant alterations in brain disorders. MS topographies are quasi-stable lasting between 60-120 ms. Some evidence suggests that MS are the electrophysiological signature of resting-state networks (RSNs). However, the spatial and functional interpretation of MS and their association with functional magnetic resonance imaging (fMRI) remains unclear.Approach. In a cohort of healthy subjects (n= 52), we conducted several statistical and machine learning (ML) approaches analyses on the association among MS spatio-temporal dynamics and the blood-oxygenation-level dependent (BOLD) simultaneous EEG-fMRI data using statistical and ML approaches.Main results.Our results using a generalized linear model showed that MS transitions were largely and negatively associated with BOLD signals in the somatomotor, visual, dorsal attention, and ventral attention fMRI networks with limited association within the default mode network. Additionally, a novel recurrent neural network (RNN) confirmed the association between MS transitioning and fMRI signal while revealing that MS dynamics can model BOLD signals and vice versa.Significance.Results suggest that MS transitions may represent the deactivation of fMRI RSNs and provide evidence that both modalities measure common aspects of undergoing brain neuronal activities. These results may help to better understand the electrophysiological interpretation of MS.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Encéfalo/fisiología , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Fenómenos Electrofisiológicos , Humanos , Imagen por Resonancia Magnética/métodos
16.
Brain Connect ; 12(4): 348-361, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34269609

RESUMEN

Background/Introduction: Sex classification using functional connectivity from resting-state functional magnetic resonance imaging (rs-fMRI) has shown promising results. This suggested that sex difference might also be embedded in the blood-oxygen-level-dependent properties such as the amplitude of low-frequency fluctuation (ALFF) and the fraction of ALFF (fALFF). This study comprehensively investigates sex differences using a reliable and explainable machine learning (ML) pipeline. Five independent cohorts of rs-fMRI with over than 5500 samples were used to assess sex classification performance and map the spatial distribution of the important brain regions. Methods: Five rs-fMRI samples were used to extract ALFF and fALFF features from predefined brain parcellations and then were fed into an unbiased and explainable ML pipeline with a wide range of methods. The pipeline comprehensively assessed unbiased performance for within-sample and across-sample validation. In addition, the parcellation effect, classifier selection, scanning length, spatial distribution, reproducibility, and feature importance were analyzed and evaluated thoroughly in the study. Results: The results demonstrated high sex classification accuracies from healthy adults (area under the curve >0.89), while degrading for nonhealthy subjects. Sex classification showed moderate to good intraclass correlation coefficient based on parcellation. Linear classifiers outperform nonlinear classifiers. Sex differences could be detected even with a short rs-fMRI scan (e.g., 2 min). The spatial distribution of important features overlaps with previous results from studies. Discussion: Sex differences are consistent in rs-fMRI and should be considered seriously in any study design, analysis, or interpretation. Features that discriminate males and females were found to be distributed across several different brain regions, suggesting a complex mosaic for sex differences in rs-fMRI. Impact statement The presented study unraveled that sex differences are embedded in the blood-oxygen-level dependent (BOLD) and can be predicted using unbiased and explainable machine learning pipeline. The study revealed that psychiatric disorders and demographics might influence the BOLD signal and interact with the classification of sex. The spatial distribution of the important features presented here supports the notion that the brain is a mosaic of male and female features. The findings emphasize the importance of controlling for sex when conducting brain imaging analysis. In addition, the presented framework can be adapted to classify other variables from resting-state BOLD signals.


Asunto(s)
Encéfalo , Caracteres Sexuales , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Femenino , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Masculino , Oxígeno , Reproducibilidad de los Resultados
17.
Front Psychiatry ; 12: 682495, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220587

RESUMEN

Neuroscience studies require considerable bioinformatic support and expertise. Numerous high-dimensional and multimodal datasets must be preprocessed and integrated to create robust and reproducible analysis pipelines. We describe a common data elements and scalable data management infrastructure that allows multiple analytics workflows to facilitate preprocessing, analysis and sharing of large-scale multi-level data. The process uses the Brain Imaging Data Structure (BIDS) format and supports MRI, fMRI, EEG, clinical, and laboratory data. The infrastructure provides support for other datasets such as Fitbit and flexibility for developers to customize the integration of new types of data. Exemplar results from 200+ participants and 11 different pipelines demonstrate the utility of the infrastructure.

18.
Child Dev ; 92(6): e1361-e1376, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34291820

RESUMEN

The parent-adolescent relationship is important for adolescents' emotion regulation (ER), yet little is known regarding the neural patterns of dyadic ER that occur during parent-adolescent interactions. A novel measure that can be used to examine such patterns is cross-brain connectivity (CBC)-concurrent and time-lagged connectivity between two individuals' brain regions. This study sought to provide evidence of CBC and explore associations between CBC, parenting, and adolescent internalizing symptoms. Thirty-five adolescents (mean age = 15 years, 69% female, 72% Non-Hispanic White, 17% Black, 11% Hispanic or Latino) and one biological parent (94% female) completed an fMRI hyperscanning conflict discussion task. Results revealed CBC between emotion-related brain regions. Exploratory analyses indicated CBC is associated with parenting and adolescent depressive symptoms.


Asunto(s)
Conducta del Adolescente , Adolescente , Emociones , Femenino , Humanos , Masculino , Relaciones Padres-Hijo , Responsabilidad Parental , Padres , Psicología del Adolescente
19.
J Neural Eng ; 18(4)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34126595

RESUMEN

Objective. Comprehensive denoising is imperative in functional magnetic resonance imaging (fMRI) analysis to reliably evaluate neural activity from the blood oxygenation level dependent signal. In real-time fMRI, however, only a minimal denoising process has been applied and the impact of insufficient denoising on online brain activity estimation has not been assessed comprehensively. This study evaluated the noise reduction performance of online fMRI processes in a real-time estimation of regional brain activity and functional connectivity.Approach.We performed a series of real-time processing simulations of online fMRI processing, including slice-timing correction, motion correction, spatial smoothing, signal scaling, and noise regression with high-pass filtering, motion parameters, motion derivatives, global signal, white matter/ventricle average signals, and physiological noise models with image-based retrospective correction of physiological motion effects (RETROICOR) and respiration volume per time (RVT).Main results.All the processing was completed in less than 400 ms for whole-brain voxels. Most processing had a benefit for noise reduction except for RVT that did not work due to the limitation of the online peak detection. The global signal regression, white matter/ventricle signal regression, and RETROICOR had a distinctive noise reduction effect, depending on the target signal, and could not substitute for each other. Global signal regression could eliminate the noise-associated bias in the mean dynamic functional connectivity across time.Significance.The results indicate that extensive real-time denoising is possible and highly recommended for real-time fMRI applications.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Procesamiento de Imagen Asistido por Computador , Estudios Retrospectivos
20.
Hum Brain Mapp ; 42(10): 3216-3227, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33835628

RESUMEN

Floatation-Reduced Environmental Stimulation Therapy (REST) is a procedure that reduces stimulation of the human nervous system by minimizing sensory signals from visual, auditory, olfactory, gustatory, thermal, tactile, vestibular, gravitational, and proprioceptive channels, in addition to minimizing musculoskeletal movement and speech. Initial research has found that Floatation-REST can elicit short-term reductions in anxiety, depression, and pain, yet little is known about the brain networks impacted by the intervention. This study represents the first functional neuroimaging investigation of Floatation-REST, and we utilized a data-driven exploratory analysis to determine whether the intervention leads to altered patterns of resting-state functional connectivity (rsFC). Healthy participants underwent functional magnetic resonance imaging (fMRI) before and after 90 min of Floatation-REST or a control condition that entailed resting supine in a zero-gravity chair for an equivalent amount of time. Multivariate Distance Matrix Regression (MDMR), a statistically-stringent whole-brain searchlight approach, guided subsequent seed-based connectivity analyses of the resting-state fMRI data. MDMR identified peak clusters of rsFC change between the pre- and post-float fMRI, revealing significant decreases in rsFC both within and between posterior hubs of the default-mode network (DMN) and a large swath of cortical tissue encompassing the primary and secondary somatomotor cortices extending into the posterior insula. The control condition, an active form of REST, showed a similar pattern of reduced rsFC. Thus, reduced stimulation of the nervous system appears to be reflected by reduced rsFC within the brain networks most responsible for creating and mapping our sense of self.


Asunto(s)
Conectoma , Red en Modo Predeterminado/fisiología , Hidroterapia , Corteza Insular/fisiología , Corteza Motora/fisiología , Red Nerviosa/fisiología , Privación Sensorial/fisiología , Corteza Somatosensorial/fisiología , Adolescente , Adulto , Red en Modo Predeterminado/diagnóstico por imagen , Femenino , Humanos , Corteza Insular/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Corteza Somatosensorial/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...