Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 455: 116258, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36174671

RESUMEN

A characteristic of cytochrome P450 (CYP) enzymes is their ability to generate H2O2, either directly or indirectly via superoxide anion, a reaction referred to as "NADPH oxidase" activity. H2O2 production by CYPs can lead to the accumulation of cytotoxic reactive oxygen species which can compromise cellular functioning and contribute to tissue injury. Herein we determined if form selective CYP inhibitors could distinguish between the activities of the monooxygenase and NADPH oxidase activities of rat recombinant CYP1A2, CYP2E1, CYP3A1 and CYP3A2 and CYP1A1/2-enriched ß-naphthoflavone-induced rat liver microsomes, CYP2E1-enriched isoniazide-induced rat liver microsomes and CYP3A subfamily-enriched dexamethasone-induced rat liver microsomes. In the presence of 7,8-benzoflavone (2.0 µM) for CYP1A2 and 4-methylpyrazole (32 µM) or DMSO (16 mM) for CYP2E1, monooxygenase activity was blocked without affecting NADPH oxidase activity for both the recombinant enzymes and microsomal preparations. Ketoconazole (1.0 µM), a form selective inhibitor for CYP3A subfamily enzymes, completely inhibited monooxygenase activity of rat recombinant CYP3A1/3A2 and CYP3A subfamily in rat liver microsomes; it also partially inhibited NADPH oxidase activity. 7,8-benzoflavone is a type I ligand, which competes with substrate binding, while 4-methylpyrazole and DMSO are type II heme binding ligands. Interactions of heme with these type II ligands was not sufficient to interfere with oxygen activation, which is required for NADPH oxidase activity. Ketoconazole, a type II ligand known to bind multiple sites on CYP3A subfamily enzymes in close proximity to heme, also interfered, at least in part, with oxygen activation. These data indicate that form specific inhibitors can be used to distinguish between monooxygenase reactions and H2O2 generating NADPH oxidase of CYP1A2 and CYP2E1. Mechanisms by which ketoconazole inhibits CYP3A NADPH oxidase remain to be determined.


Asunto(s)
Citocromo P-450 CYP1A2 , Inhibidores Enzimáticos del Citocromo P-450 , Ratas , Animales , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Peróxido de Hidrógeno/metabolismo , NADP/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Cetoconazol/farmacología , Superóxidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , beta-naftoflavona/farmacología , Fomepizol , Ligandos , Dimetilsulfóxido , Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas Hepáticos/metabolismo , Hemo/metabolismo , Dexametasona/farmacología , Oxígeno/metabolismo
2.
Free Radic Res ; 54(8-9): 620-628, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32912004

RESUMEN

A sensitive fluorescence assay based on Amplex Red (AR) oxidation by horseradish peroxidase (AR/HRP) is described which continuously monitor rates of H2O2 production by microsomal enzymes in the presence of relatively high concentrations of NADPH. NADPH and NADH are known to interact with HRP and generate significant quantities of superoxide anion, a radical that spontaneously dismutates to form H2O2 which interferes with the AR/HRP assay. Microsomal enzymes generate H2O2 as a consequence of electron transfer from NADPH to cytochrome P450 hemoproteins with subsequent oxygen activation. We found that superoxide anion formation via the interaction of NADPH with HRP was inhibited by superoxide dismutase (SOD) without affecting H2O2 generation by microsomal enzymes. Using SOD in enzyme assays, we consistently detected rates of H2O2 production using microgram quantities of microsomal proteins (2.62 ± 0.20 picomol/min/µg protein for liver microsomes from naïve female rats, 12.27 ± 1.29 for liver microsomes from dexamethasone induced male rats, and 2.17 ± 0.25 picomol/min/µg protein for human liver microsomes). This method can also be applied to quantify rates of H2O2 production by oxidases where superoxide anion generation by NADH or NADPH and HRP can interfere with enzyme assays.


Asunto(s)
Peroxidasa de Rábano Silvestre/metabolismo , Peróxido de Hidrógeno/metabolismo , NADP/metabolismo , Oxazinas/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Humanos , Masculino , Ratas
3.
Chem Res Toxicol ; 32(6): 1087-1095, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-30977360

RESUMEN

Available studies, while limited in number, suggest that e-cigarette vaping induces oxidative stress, with one potential mechanism being the direct formation of reactive oxygen species (ROS) in e-vapor. In the present studies, we measured the formation of hydroxyl radical (•OH), the most destructive ROS, in e-vapor under a range of vaping patterns (i.e., power settings, solvent concentrations, flavorings). Study results show that increased power output and puff volume correspond with the formation of significantly higher amounts of •OH in e-vapor because of elevated coil temperature and oxygen supply. Vegetable glycerin (VG) e-liquids generated higher •OH levels than propylene glycol (PG) e-liquids, as did flavored e-liquids relative to nonflavored e-liquids. E-vapor in combination with ascorbic acid, which is an abundant biological molecule in human epithelial lining fluid, can also induce •OH formation. The dose of radical per puff associated with e-cigarette vaping was 10-1000 times lower than the reported dose generated by cigarette smoking. However, the daily average •OH dose can be comparable to that from cigarette smoking depending on vaping patterns. Overall, e-cigarette users who use VG-based flavored e-cigarettes at higher power output settings may be at increased risk for •OH exposures and related health consequences such as asthma and chronic obstructive pulmonary disease.


Asunto(s)
Cigarrillo Electrónico a Vapor/química , Sistemas Electrónicos de Liberación de Nicotina , Aromatizantes/química , Radical Hidroxilo/análisis , Vapeo , Humanos , Ligandos , Oxidación-Reducción
4.
Toxicol Appl Pharmacol ; 359: 102-107, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30222979

RESUMEN

NADH cytochrome b5 reductase mediates electron transfer from NADH to cytochrome b5 utilizing flavin adenine dinucleotide as a redox cofactor. Reduced cytochrome b5 is an important cofactor in many metabolic reactions including cytochrome P450-mediated xenobiotic metabolism, steroid biosynthesis and fatty acid metabolism, hemoglobin reduction, and methionine and plasmalogen synthesis. Using recombinant human enzyme, we discovered that cytochrome b5 reductase mediates redox cycling of a variety of quinones generating superoxide anion, hydrogen peroxide, and, in the presence of transition metals, hydroxyl radicals. Redox cycling activity was oxygen-dependent and preferentially utilized NADH as a co-substrate; NADH was 5-10 times more active than NADPH in supporting redox cycling. Redox cycling activity was greatest for 9,10-phenanthrenequinone and 1,2-naphthoquinone, followed by 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone (menadione), nitrofurantoin and 2-hydroxyestradiol. Using menadione as the substrate, quinone redox cycling was found to inhibit reduction of cytochrome b5 by cytochrome b5 reductase, as measured by heme spectral changes in cytochrome b5. Under anaerobic conditions where redox cycling is inhibited, menadione had no effect on the reduction of cytochrome b5. Chemical redox cycling by cytochrome b5 reductase may be important in generating cytotoxic reactive oxygen species in target tissues. This activity, together with the inhibition of cytochrome b5 reduction by redox-active chemicals and consequent deficiencies in available cellular cytochrome b5, are likely to contribute to tissue injury following exposure to quinones and related redox active chemicals.


Asunto(s)
Benzoquinonas/metabolismo , Citocromo-B(5) Reductasa/metabolismo , Nitrofurantoína/metabolismo , Radicales Libres/metabolismo , Humanos , Cinética , Microsomas Hepáticos , NADP/metabolismo , Oxidación-Reducción , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/metabolismo
5.
Chem Res Toxicol ; 30(7): 1406-1418, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28595002

RESUMEN

Reactive carbonyls such as diacetyl (2,3-butanedione) and 2,3-pentanedione in tobacco and many food and consumer products are known to cause severe respiratory diseases. Many of these chemicals are detoxified by carbonyl reductases in the lung, in particular, dicarbonyl/l-xylulose reductase (DCXR), a multifunctional enzyme important in glucose metabolism. DCXR is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Using recombinant human enzyme, we discovered that DCXR mediates redox cycling of a variety of quinones generating superoxide anion, hydrogen peroxide, and, in the presence of transition metals, hydroxyl radicals. Redox cycling activity preferentially utilized NADH as a cosubstrate and was greatest for 9,10-phenanthrenequinone and 1,2-naphthoquinone, followed by 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone (menadione). Using 9,10-phenanthrenequinone as the substrate, quinone redox cycling was found to inhibit DCXR reduction of l-xylulose and diacetyl. Competitive inhibition of enzyme activity by the quinone was observed with respect to diacetyl (Ki = 190 µM) and l-xylulose (Ki = 940 µM). Abundant DCXR activity was identified in A549 lung epithelial cells when diacetyl was used as a substrate. Quinones inhibited reduction of this dicarbonyl, causing an accumulation of diacetyl in the cells and culture medium and a decrease in acetoin, the reduced product of diacetyl. The identification of DCXR as an enzyme activity mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. These activities, together with the inhibition of dicarbonyl/l-xylulose metabolism by redox-active chemicals, as well as consequent deficiencies in pentose metabolism, are likely to contribute to lung injury following exposure to dicarbonyls and quinones.


Asunto(s)
Células Epiteliales/metabolismo , Pulmón/patología , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Células A549 , Relación Dosis-Respuesta a Droga , Células Epiteliales/enzimología , Humanos , Pulmón/enzimología , Pulmón/metabolismo , Estructura Molecular , Oxidación-Reducción , Quinonas/química , Quinonas/farmacología , Relación Estructura-Actividad , Deshidrogenasas del Alcohol de Azúcar/antagonistas & inhibidores , Deshidrogenasas del Alcohol de Azúcar/genética
6.
Ann N Y Acad Sci ; 1378(1): 80-86, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27441453

RESUMEN

Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase. We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH-cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the Food and Drug Administration for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity.


Asunto(s)
Inhibidores de la Colinesterasa/toxicidad , Inhibidores Enzimáticos del Citocromo P-450/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Paratión/toxicidad , Vitamina K 3/administración & dosificación , Animales , Inhibidores de la Colinesterasa/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Insecticidas/metabolismo , Insecticidas/toxicidad , Intoxicación por Organofosfatos/tratamiento farmacológico , Intoxicación por Organofosfatos/enzimología , Paratión/metabolismo , Vitamina K 3/metabolismo
7.
Toxicol Appl Pharmacol ; 304: 110-20, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27163765

RESUMEN

Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300mg/kg, i.p.) to control mice resulted in an increase in CD11b(+) infiltrating Ly6G(+) granulocytic and Ly6G(-) monocytic cells in the spleen and the liver. The majority of the Ly6G(+) cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G(-) cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80(+)) and immature (F4/80(-)) pro-inflammatory Ly6C(hi) macrophages and mature anti-inflammatory (Ly6C(lo)) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3(+) macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Mediadores de Inflamación/metabolismo , Células Mieloides/efectos de los fármacos , Bazo/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C , Quimiocinas/biosíntesis , Galectina 3/metabolismo , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos/efectos de los fármacos , Fenotipo , Receptores CCR2/biosíntesis , Receptores de Quimiocina/biosíntesis , Esplenectomía
8.
Toxicol Sci ; 151(1): 150-9, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26880746

RESUMEN

Cytochrome P450 (CYP) enzymes mediate mixed-function oxidation reactions important in drug metabolism. The aromatic heterocyclic cation, diphenyleneiodonium (DPI), binds flavin in cytochrome P450 reductase and inhibits CYP-mediated activity. DPI also inhibits CYP by directly interacting with heme. Herein, we report that DPI effectively inhibits a number of CYP-related monooxygenase reactions including NADPH oxidase, a microsomal enzyme activity that generates hydrogen peroxide in the absence of metabolizing substrates. Inhibition of monooxygenase by DPI was time and concentration dependent with IC50's ranging from 0.06 to 1.9 µM. Higher (4.6-23.9 µM), but not lower (0.06-1.9 µM), concentrations of DPI inhibited electron flow via cytochrome P450 reductase, as measured by its ability to reduce cytochrome c and mediate quinone redox cycling. Similar results were observed with inducible nitric oxide synthase (iNOS), an enzyme containing a C-terminal reductase domain homologous to cytochrome P450 reductase that mediates reduction of cytochrome c, and an N-terminal heme-thiolate oxygenase domain mediating nitric oxide production. Significantly greater concentrations of DPI were required to inhibit cytochrome c reduction by iNOS (IC50 = 3.5 µM) than nitric oxide production (IC50 = 0.16 µM). Difference spectra of liver microsomes, recombinant CYPs, and iNOS demonstrated that DPI altered heme-carbon monoxide interactions. In the presence of NADPH, DPI treatment of microsomes and iNOS yielded a type II spectral shift. These data indicate that DPI interacts with both flavin and heme in CYPs and iNOS. Increased sensitivity for inhibition of CYP-mediated metabolism and nitric oxide production by iNOS indicates that DPI targets heme moieties within the enzymes.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Hemo/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Compuestos Onio/farmacología , Animales , Relación Dosis-Respuesta a Droga , Hemo/metabolismo , Humanos , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Factores de Tiempo
9.
Int J Environ Res Public Health ; 12(11): 13678-95, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26516887

RESUMEN

Oxidative stress is one of the key mechanisms linking ambient particulate matter (PM) exposure with various adverse health effects. The oxidative potential of PM has been used to characterize the ability of PM induced oxidative stress. Hydroxyl radical (•OH) is the most destructive radical produced by PM. However, there is currently no high-throughput approach which can rapidly measure PM-induced •OH for a large number of samples with an automated system. This study evaluated four existing molecular probes (disodium terephthalate, 3'-p-(aminophenyl)fluorescein, coumarin-3-carboxylic acid, and sodium benzoate) for their applicability to measure •OH induced by PM in a high-throughput cell-free system using fluorescence techniques, based on both our experiments and on an assessment of the physicochemical properties of the probes reported in the literature. Disodium terephthalate (TPT) was the most applicable molecular probe to measure •OH induced by PM, due to its high solubility, high stability of the corresponding fluorescent product (i.e., 2-hydroxyterephthalic acid), high yield compared with the other molecular probes, and stable fluorescence intensity in a wide range of pH environments. TPT was applied in a high-throughput format to measure PM (NIST 1648a)-induced •OH, in phosphate buffered saline. The formed fluorescent product was measured at designated time points up to 2 h. The fluorescent product of TPT had a detection limit of 17.59 nM. The soluble fraction of PM contributed approximately 76.9% of the •OH induced by total PM, and the soluble metal ions of PM contributed 57.4% of the overall •OH formation. This study provides a promising cost-effective high-throughput method to measure •OH induced by PM on a routine basis.


Asunto(s)
Colorantes Fluorescentes , Radical Hidroxilo/análisis , Técnicas de Sonda Molecular , Sondas Moleculares , Material Particulado/química , Compuestos de Anilina , Cumarinas , Fluoresceínas , Metales , Ácidos Ftálicos/análisis , Benzoato de Sodio
10.
Toxicol Appl Pharmacol ; 288(1): 114-20, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26212258

RESUMEN

Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation.


Asunto(s)
Inhibidores de la Colinesterasa/toxicidad , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Insecticidas/toxicidad , Hígado/efectos de los fármacos , Intoxicación por Organofosfatos/prevención & control , Paratión/toxicidad , Vitamina K 3/farmacología , Acetilcolinesterasa/metabolismo , Activación Metabólica , Animales , Inhibidores de la Colinesterasa/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Citoprotección , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Insecticidas/metabolismo , Hígado/enzimología , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , NADP/metabolismo , Intoxicación por Organofosfatos/enzimología , Intoxicación por Organofosfatos/etiología , Oxidación-Reducción , Paraoxon/metabolismo , Paraoxon/toxicidad , Paratión/metabolismo , Ratas Long-Evans , Proteínas Recombinantes/metabolismo , Factores de Tiempo , Vitamina K 3/metabolismo
11.
J Pharmacol Exp Ther ; 352(3): 529-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25550200

RESUMEN

Sepiapterin reductase (SPR) catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4), a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism. SPR also mediates chemical redox cycling, catalyzing one-electron reduction of redox-active chemicals, including quinones and bipyridinium herbicides (e.g., menadione, 9,10-phenanthrenequinone, and diquat); rapid reaction of the reduced radicals with molecular oxygen generates reactive oxygen species (ROS). Using recombinant human SPR, sulfonamide- and sulfonylurea-based sulfa drugs were found to be potent noncompetitive inhibitors of both sepiapterin reduction and redox cycling. The most potent inhibitors of sepiapterin reduction (IC50s = 31-180 nM) were sulfasalazine, sulfathiazole, sulfapyridine, sulfamethoxazole, and chlorpropamide. Higher concentrations of the sulfa drugs (IC50s = 0.37-19.4 µM) were required to inhibit redox cycling, presumably because of distinct mechanisms of sepiapterin reduction and redox cycling. In PC12 cells, which generate catecholamine and monoamine neurotransmitters via BH4-dependent amino acid hydroxylases, sulfa drugs inhibited both BH2/BH4 biosynthesis and redox cycling mediated by SPR. Inhibition of BH2/BH4 resulted in decreased production of dopamine and dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 5-hydroxytryptamine. Sulfathiazole (200 µM) markedly suppressed neurotransmitter production, an effect reversed by BH4. These data suggest that SPR and BH4-dependent enzymes, are "off-targets" of sulfa drugs, which may underlie their untoward effects. The ability of the sulfa drugs to inhibit redox cycling may ameliorate ROS-mediated toxicity generated by redox active drugs and chemicals, contributing to their anti-inflammatory activity.


Asunto(s)
Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/metabolismo , Pterinas/antagonistas & inhibidores , Pterinas/metabolismo , Sulfasalazina/farmacología , Sulfatiazoles/farmacología , Oxidorreductasas de Alcohol/química , Animales , Humanos , Ratones , Oxidación-Reducción/efectos de los fármacos , Células PC12 , Estructura Secundaria de Proteína , Pterinas/química , Ratas , Sulfatiazol
12.
Toxicol Sci ; 141(2): 344-52, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25061110

RESUMEN

Microsomal enzymes generate H2O2 in the presence of NADPH. In this reaction, referred to as "oxidase" activity, H2O2 is generated directly or indirectly via the formation of superoxide anion. In the presence of redox active transition metals, H2O2 can form highly toxic hydroxyl radicals and, depending on the "oxidase" activity of individual cytochrome P450 isoenzymes, this can compromise cellular functioning and contribute to tissue injury. In the present studies, we compared the initial rates of H2O2 generating activity of microsomal preparations containing various human recombinant cytochromes P450s. In the absence of cytochrome P450s the human recombinant NADPH cytochrome P450 reductase (CPR) generated low, but detectable amounts of H2O2 (∼0.04 nmol H2O2/min/100 units of reductase). Significantly greater activity was detected in preparations containing individual cytochrome P450s coexpressed with CPR (from 6.0 nmol H2O2/min/nmol P450 to 0.2 nmol/min/nmol P450); CYP1A1 was the most active, followed by CYP2D6, CYP3A4, CYP2E1, CYP4A11, CYP1A2, and CYP2C subfamily enzymes. H2O2 generating activity of the cytochrome P450s was independent of the ratio of CYP/CPR. Thus, similar H2O2 generating activity was noted with the same cytochrome P450s (CYP3A4, CYP2E1, and CYP2C9) expressed at or near the ratio of CYP/CPR in human liver microsomes (5-7), and when CPR was present in excess (CYP/CPR = 0.2-0.3). Because CYP3A4/5/7 represent up to 40% of total cytochrome P450 in the liver, these data indicate that these enzymes are the major source of H2O2 in human liver microsomes.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Peróxido de Hidrógeno/metabolismo , Hígado/enzimología , NADPH-Ferrihemoproteína Reductasa/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Humanos , Isoenzimas , Cinética , Microsomas Hepáticos/enzimología , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
13.
Toxicol Appl Pharmacol ; 279(1): 43-52, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24832492

RESUMEN

The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress.


Asunto(s)
Aldehídos/metabolismo , Encéfalo/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Aldehídos/antagonistas & inhibidores , Animales , Anticuerpos Bloqueadores/farmacología , Western Blotting , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Inhibidores Enzimáticos/farmacología , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Cinética , Hígado/efectos de los fármacos , Hígado/enzimología , Pulmón/efectos de los fármacos , Pulmón/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Long-Evans , Especificidad de la Especie , Fracciones Subcelulares/enzimología , Fracciones Subcelulares/metabolismo
14.
Toxicol Appl Pharmacol ; 275(2): 113-21, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24423726

RESUMEN

4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86-98 fold within 6h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6h with 30 µM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2-/- mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-ß-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress.


Asunto(s)
Aldehídos/farmacología , Antioxidantes/metabolismo , Queratinocitos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Animales , Caveolas/efectos de los fármacos , Caveolas/metabolismo , Línea Celular , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Queratinocitos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , beta-Ciclodextrinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Toxicol Appl Pharmacol ; 272(2): 345-55, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23845594

RESUMEN

The cornea is highly sensitive to oxidative stress, a process that can lead to lipid peroxidation. Ultraviolet light B (UVB) and nitrogen mustard (mechlorethamine) are corneal toxicants known to induce oxidative stress. Using a rabbit air-lifted corneal organ culture model, the oxidative stress responses to these toxicants in the corneal epithelium was characterized. Treatment of the cornea with UVB (0.5 J/cm(2)) or nitrogen mustard (100 nmol) resulted in the generation of 4-hydroxynonenal (4-HNE), a reactive lipid peroxidation end product. This was associated with increased expression of the antioxidant, heme oxygenase-1 (HO-1). In human corneal epithelial cells in culture, addition of 4-HNE or 9-nitrooleic acid, a reactive nitrolipid formed during nitrosative stress, caused a time-dependent induction of HO-1 mRNA and protein; maximal responses were evident after 10h with 30 µM 4-HNE or 6h with 10 µM 9-nitrooleic acid. 4-HNE and 9-nitrooleic acid were also found to activate Erk1/2, JNK and p38 MAP kinases, as well as phosphoinositide-3-kinase (PI3)/Akt. Inhibition of p38 blocked 4-HNE- and 9-nitrooleic acid-induced HO-1 expression. Inhibition of Erk1/2, and to a lesser extent, JNK and PI3K/Akt, suppressed only 4-HNE-induced HO-1, while inhibition of JNK and PI3K/Akt, but not Erk1/2, partly reduced 9-nitrooleic acid-induced HO-1. These data indicate that the actions of 4-HNE and 9-nitrooleic acid on corneal epithelial cells are distinct. The sensitivity of corneal epithelial cells to oxidative stress may be an important mechanism mediating tissue injury induced by UVB or nitrogen mustard.


Asunto(s)
Aldehídos/metabolismo , Córnea/metabolismo , Peroxidación de Lípido , Peróxidos Lipídicos/metabolismo , Mecloretamina/toxicidad , Rayos Ultravioleta/efectos adversos , Aldehídos/toxicidad , Animales , Córnea/efectos de los fármacos , Córnea/efectos de la radiación , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Hemo-Oxigenasa 1/biosíntesis , Humanos , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/efectos de la radiación , Peróxidos Lipídicos/toxicidad , Técnicas de Cultivo de Órganos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Conejos , Factores de Tiempo
16.
J Biol Chem ; 288(26): 19221-37, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23640889

RESUMEN

In the lung, chemical redox cycling generates highly toxic reactive oxygen species that can cause alveolar inflammation and damage to the epithelium, as well as fibrosis. In this study, we identified a cytosolic NADPH-dependent redox cycling activity in mouse lung epithelial cells as sepiapterin reductase (SPR), an enzyme important for the biosynthesis of tetrahydrobiopterin. Human SPR was cloned and characterized. In addition to reducing sepiapterin, SPR mediated chemical redox cycling of bipyridinium herbicides and various quinones; this activity was greatest for 1,2-naphthoquinone followed by 9,10-phenanthrenequinone, 1,4-naphthoquinone, menadione, and 2,3-dimethyl-1,4-naphthoquinone. Whereas redox cycling chemicals inhibited sepiapterin reduction, sepiapterin had no effect on redox cycling. Additionally, inhibitors such as dicoumarol, N-acetylserotonin, and indomethacin blocked sepiapterin reduction, with no effect on redox cycling. Non-redox cycling quinones, including benzoquinone and phenylquinone, were competitive inhibitors of sepiapterin reduction but noncompetitive redox cycling inhibitors. Site-directed mutagenesis of the SPR C-terminal substrate-binding site (D257H) completely inhibited sepiapterin reduction but had minimal effects on redox cycling. These data indicate that SPR-mediated reduction of sepiapterin and redox cycling occur by distinct mechanisms. The identification of SPR as a key enzyme mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. This activity, together with inhibition of sepiapterin reduction by redox-active chemicals and consequent deficiencies in tetrahydrobiopterin, may contribute to tissue injury.


Asunto(s)
Oxidorreductasas de Alcohol/química , Células Epiteliales/citología , Pulmón/citología , Animales , Biopterinas/análogos & derivados , Biopterinas/química , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Vectores Genéticos , Humanos , Ratones , Modelos Químicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Estrés Oxidativo , Quinonas/química , Especies Reactivas de Oxígeno , Proteínas Recombinantes/química
17.
Toxicol Appl Pharmacol ; 262(2): 139-48, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22575169

RESUMEN

Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK⁻/⁻ mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK⁻/⁻ mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK⁻/⁻ mice. Whereas F4/80⁺ macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK⁻/⁻ mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1ß, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK⁻/⁻ mice treated with acetaminophen. These data demonstrate that STK plays a role in regulating macrophage recruitment and activation in the liver following acetaminophen administration, and in hepatotoxicity.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Activación de Macrófagos/efectos de los fármacos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Citocinas/genética , Citocinas/metabolismo , Glutatión/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Hígado/efectos de los fármacos , Hígado/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/metabolismo , ARN/química , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Toxicol Sci ; 127(2): 609-19, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22461450

RESUMEN

Galectin-3 (Gal-3) is a ß-galactoside-binding lectin implicated in the regulation of macrophage activation and inflammatory mediator production. In the present studies, we analyzed the role of Gal-3 in liver inflammation and injury induced by acetaminophen (APAP). Treatment of wild-type (WT) mice with APAP (300 mg/kg, ip) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was associated with increased hepatic expression of Gal-3 messenger RNA and protein. Immunohistochemical analysis showed that Gal-3 was predominantly expressed by mononuclear cells infiltrating into necrotic areas. APAP-induced hepatotoxicity was reduced in Gal-3-deficient mice. This was most pronounced at 48-72 h post-APAP and correlated with decreases in APAP-induced expression of 24p3, a marker of inflammation and oxidative stress. These effects were not due to alterations in APAP metabolism or hepatic glutathione levels. The proinflammatory proteins, inducible nitric oxide synthase (iNOS), interleukin (IL)-1ß, macrophage inflammatory protein (MIP)-2, matrix metalloproteinase (MMP)-9, and MIP-3α, as well as the Gal-3 receptor (CD98), were upregulated in livers of WT mice after APAP intoxication. Loss of Gal-3 resulted in a significant reduction in expression of iNOS, MMP-9, MIP-3α, and CD98, with no effects on IL-1ß. Whereas APAP-induced increases in MIP-2 were augmented at 6 h in Gal-3(-/-) mice when compared with WT mice, at 48 and 72 h, they were suppressed. Tumor necrosis factor receptor-1 (TNFR1) was also upregulated after APAP, a response dependent on Gal-3. Moreover, exaggerated APAP hepatotoxicity in mice lacking TNFR1 was associated with increased Gal-3 expression. These data demonstrate that Gal-3 is important in promoting inflammation and injury in the liver following APAP intoxication.


Asunto(s)
Acetaminofén/toxicidad , Analgésicos no Narcóticos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Galectina 3/metabolismo , Mediadores de Inflamación/metabolismo , Hígado/efectos de los fármacos , Acetaminofén/metabolismo , Analgésicos no Narcóticos/metabolismo , Animales , Biotransformación , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocromo P-450 CYP2E1/metabolismo , Galectina 3/deficiencia , Galectina 3/genética , Regulación de la Expresión Génica , Glutatión/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis , ARN Mensajero/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factores de Tiempo
19.
Toxicol Sci ; 125(2): 607-12, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22048645

RESUMEN

Fenbendazole is a broad-spectrum anthelmintic drug widely used to prevent or treat nematode infections in laboratory rodent colonies. Potential interactions between fenbendazole and hepatotoxicants such as acetaminophen are unknown, and this was investigated in this study. Mice were fed a control diet or a diet containing fenbendazole (8-12 mg/kg/day) for 7 days prior to treatment with acetaminophen (300 mg/kg) or phosphate buffered saline. In mice fed a control diet, acetaminophen administration resulted in centrilobular hepatic necrosis and increases in serum transaminases, which were evident within 12 h. Acetaminophen-induced hepatotoxicity was markedly increased in mice fed the fenbendazole-containing diet, as measured histologically and by significant increases in serum transaminase levels. Moreover, in mice fed the fenbendazole-containing diet, but not the control diet, 63% mortality was observed within 24 h of acetaminophen administration. Fenbendazole by itself had no effect on liver histology or serum transaminases. To determine if exaggerated hepatotoxicity was due to alterations in acetaminophen metabolism, we analyzed sera for the presence of free acetaminophen and acetaminophen-glucuronide. We found that there were no differences in acetaminophen turnover. We also measured cytochrome P450 (cyp) 2e1, cyp3a, and cyp1a2 activity. Whereas fenbendazole had no effect on the activity of cyp2e1 or cyp3a, cyp1a2 was suppressed. A prolonged suppression of hepatic glutathione (GSH) was also observed in acetaminophen-treated mice fed the fenbendazole-containing diet when compared with the control diet. These data demonstrate that fenbendazole exacerbates the hepatotoxicity of acetaminophen, an effect that is related to persistent GSH depletion. These findings are novel and suggest a potential drug-drug interaction that should be considered in experimental protocols evaluating mechanisms of hepatotoxicity in rodent colonies treated with fenbendazole.


Asunto(s)
Acetaminofén/toxicidad , Antihelmínticos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Fenbendazol/toxicidad , Hígado/efectos de los fármacos , Acetaminofén/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocromo P-450 CYP1A2/metabolismo , Inhibidores del Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A , Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Animales de Enfermedad , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Glutatión/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo
20.
Free Radic Biol Med ; 50(7): 874-82, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21215309

RESUMEN

Diquat and paraquat are nonspecific defoliants that induce toxicity in many organs including the lung, liver, kidney, and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling. In this study, diquat and paraquat redox cycling was characterized using human recombinant NADPH-cytochrome P450 reductase, rat liver microsomes, and Chinese hamster ovary (CHO) cells constructed to overexpress cytochrome P450 reductase (CHO-OR) and wild-type control cells (CHO-WT). In redox cycling assays with recombinant cytochrome P450 reductase and microsomes, diquat was 10-40 times more effective at generating ROS compared to paraquat (K(M)=1.0 and 44.2µM, respectively, for H(2)O(2) generation by diquat and paraquat using recombinant enzyme, and 15.1 and 178.5µM, respectively for microsomes). In contrast, at saturating concentrations, these compounds showed similar redox cycling activity (V(max)≈6.0nmol H(2)O(2)/min/mg protein) for recombinant enzyme and microsomes. Diquat and paraquat also redox cycle in CHO cells. Significantly more activity was evident in CHO-OR cells than in CHO-WT cells. Diquat redox cycling in CHO cells was associated with marked increases in protein carbonyl formation, a marker of protein oxidation, as well as cellular oxygen consumption, measured using oxygen microsensors; greater activity was detected in CHO-OR cells than in CHO-WT cells. These data demonstrate that ROS formation during diquat redox cycling can generate oxidative stress. Enhanced oxygen utilization during redox cycling may reduce intracellular oxygen available for metabolic reactions and contribute to toxicity.


Asunto(s)
Diquat/farmacología , Hígado/metabolismo , NADPH-Ferrihemoproteína Reductasa , Oxígeno/metabolismo , Paraquat/farmacología , Animales , Células CHO , Cricetinae , Cricetulus , Diquat/metabolismo , Femenino , Expresión Génica , Humanos , Peróxido de Hidrógeno/metabolismo , Microsomas Hepáticos/metabolismo , NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Paraquat/metabolismo , Carbonilación Proteica/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...