Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114211, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38722741

RESUMEN

Multiple myeloma (MM) remains an incurable hematological malignancy demanding innovative therapeutic strategies. Targeting MYC, the notorious yet traditionally undruggable oncogene, presents an appealing avenue. Here, using a genome-scale CRISPR-Cas9 screen, we identify the WNK lysine-deficient protein kinase 1 (WNK1) as a regulator of MYC expression in MM cells. Genetic and pharmacological inhibition of WNK1 reduces MYC expression and, further, disrupts the MYC-dependent transcriptional program. Mechanistically, WNK1 inhibition attenuates the activity of the immunoglobulin heavy chain (IgH) enhancer, thus reducing MYC transcription when this locus is translocated near the MYC locus. WNK1 inhibition profoundly impacts MM cell behaviors, leading to growth inhibition, cell-cycle arrest, senescence, and apoptosis. Importantly, the WNK inhibitor WNK463 inhibits MM growth in primary patient samples as well as xenograft mouse models and exhibits synergistic effects with various anti-MM compounds. Collectively, our study uncovers WNK1 as a potential therapeutic target in MM.

2.
Cell Rep ; 43(4): 114041, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573857

RESUMEN

CD24 is frequently overexpressed in ovarian cancer and promotes immune evasion by interacting with its receptor Siglec10, present on tumor-associated macrophages, providing a "don't eat me" signal that prevents targeting and phagocytosis by macrophages. Factors promoting CD24 expression could represent novel immunotherapeutic targets for ovarian cancer. Here, using a genome-wide CRISPR knockout screen, we identify GPAA1 (glycosylphosphatidylinositol anchor attachment 1), a factor that catalyzes the attachment of a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins, as a positive regulator of CD24 cell surface expression. Genetic ablation of GPAA1 abolishes CD24 cell surface expression, enhances macrophage-mediated phagocytosis, and inhibits ovarian tumor growth in mice. GPAA1 shares structural similarities with aminopeptidases. Consequently, we show that bestatin, a clinically advanced aminopeptidase inhibitor, binds to GPAA1 and blocks GPI attachment, resulting in reduced CD24 cell surface expression, increased macrophage-mediated phagocytosis, and suppressed growth of ovarian tumors. Our study highlights the potential of targeting GPAA1 as an immunotherapeutic approach for CD24+ ovarian cancers.


Asunto(s)
Aciltransferasas , Antígeno CD24 , Neoplasias Ováricas , Fagocitosis , Animales , Femenino , Humanos , Ratones , Aciltransferasas/metabolismo , Amidohidrolasas/metabolismo , Amidohidrolasas/genética , Antígeno CD24/metabolismo , Línea Celular Tumoral , Glicosilfosfatidilinositoles/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/terapia
3.
Biochimie ; 220: 67-83, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38168626

RESUMEN

In the ongoing battle against antimicrobial resistance, phenotypic drug tolerance poses a formidable challenge. This adaptive ability of microorganisms to withstand drug pressure without genetic alterations further complicating global healthcare challenges. Microbial populations employ an array of persistence mechanisms, including dormancy, biofilm formation, adaptation to intracellular environments, and the adoption of L-forms, to develop drug tolerance. Moreover, molecular mechanisms like toxin-antitoxin modules, oxidative stress responses, energy metabolism, and (p)ppGpp signaling contribute to this phenomenon. Understanding these persistence mechanisms is crucial for predicting drug efficacy, developing strategies for chronic bacterial infections, and exploring innovative therapies for refractory infections. In this comprehensive review, we dissect the intricacies of drug tolerance and persister formation, explore their role in acquired drug resistance, and highlight emerging therapeutic approaches to combat phenotypic drug tolerance. Furthermore, we outline the future landscape of interventions for persistent bacterial infections.


Asunto(s)
Antibacterianos , Bacterias , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Tolerancia a Medicamentos , Farmacorresistencia Bacteriana , Estrés Oxidativo/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Fenotipo
4.
Biology (Basel) ; 12(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37508427

RESUMEN

The advent of next-generation sequencing (NGS) has brought about a paradigm shift in genomics research, offering unparalleled capabilities for analyzing DNA and RNA molecules in a high-throughput and cost-effective manner. This transformative technology has swiftly propelled genomics advancements across diverse domains. NGS allows for the rapid sequencing of millions of DNA fragments simultaneously, providing comprehensive insights into genome structure, genetic variations, gene expression profiles, and epigenetic modifications. The versatility of NGS platforms has expanded the scope of genomics research, facilitating studies on rare genetic diseases, cancer genomics, microbiome analysis, infectious diseases, and population genetics. Moreover, NGS has enabled the development of targeted therapies, precision medicine approaches, and improved diagnostic methods. This review provides an insightful overview of the current trends and recent advancements in NGS technology, highlighting its potential impact on diverse areas of genomic research. Moreover, the review delves into the challenges encountered and future directions of NGS technology, including endeavors to enhance the accuracy and sensitivity of sequencing data, the development of novel algorithms for data analysis, and the pursuit of more efficient, scalable, and cost-effective solutions that lie ahead.

5.
Life Sci ; 328: 121857, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37307965

RESUMEN

Cell-based immunotherapies have become an exciting avenue for cancer treatment, particularly CAR T cells, which have shown great success in treating hematological malignancies. However, the limited success of T cell-based approaches in treating solid tumors has sparked interest in alternative cell types that could be used for solid tumor immunotherapy. Recent research has pointed to macrophages as a potential solution, given their ability to infiltrate solid tumors, exhibit a strong anti-tumor response, and persist long-term in the tumor microenvironment. Although early attempts with ex-vivo activated macrophage-based therapies failed to translate into clinical success, the field has revolutionized with the recent development of chimeric antigen receptor-expressing macrophages (CAR-M). While CAR-M therapy has reached the clinical trial stage, several challenges still need to be overcome before the therapy can become a reality. Here we review the evolution of macrophage-based cell therapy and evaluate recent studies and developments, emphasizing the potential of macrophages as cellular therapeutics. Furthermore, we also discuss the challenges and opportunities associated with using macrophages as a basis for therapeutic interventions.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Neoplasias/terapia , Inmunoterapia , Inmunoterapia Adoptiva , Microambiente Tumoral , Macrófagos
6.
Diseases ; 10(3)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36135216

RESUMEN

Recent advances in cancer immunology have enabled the discovery of promising immunotherapies for various malignancies that have shifted the cancer treatment paradigm. The innovative research and clinical advancements of immunotherapy approaches have prolonged the survival of patients with relapsed or refractory metastatic cancers. Since the U.S. FDA approved the first immune checkpoint inhibitor in 2011, the field of cancer immunotherapy has grown exponentially. Multiple therapeutic approaches or agents to manipulate different aspects of the immune system are currently in development. These include cancer vaccines, adoptive cell therapies (such as CAR-T or NK cell therapy), monoclonal antibodies, cytokine therapies, oncolytic viruses, and inhibitors targeting immune checkpoints that have demonstrated promising clinical efficacy. Multiple immunotherapeutic approaches have been approved for specific cancer treatments, while others are currently in preclinical and clinical trial stages. Given the success of immunotherapy, there has been a tremendous thrust to improve the clinical efficacy of various agents and strategies implemented so far. Here, we present a comprehensive overview of the development and clinical implementation of various immunotherapy approaches currently being used to treat cancer. We also highlight the latest developments, emerging trends, limitations, and future promises of cancer immunotherapy.

7.
Vaccines (Basel) ; 11(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36679900

RESUMEN

The revolution in cancer immunotherapy over the last few decades has resulted in a paradigm shift in the clinical care of cancer. Most of the cancer immunotherapeutic regimens approved so far have relied on modulating the adaptive immune system. In recent years, strategies and approaches targeting the components of innate immunity have become widely recognized for their efficacy in targeting solid cancers. Macrophages are effector cells of the innate immune system, which can play a crucial role in the generation of anti-tumor immunity through their ability to phagocytose cancer cells and present tumor antigens to the cells of adaptive immunity. However, the macrophages that are recruited to the tumor microenvironment predominantly play pro-tumorigenic roles. Several strategies targeting pro-tumorigenic functions and harnessing the anti-tumorigenic properties of macrophages have shown promising results in preclinical studies, and a few of them have also advanced to clinical trials. In this review, we present a comprehensive overview of the pathobiology of TAMs and their role in the progression of solid malignancies. We discuss various mechanisms through which TAMs promote tumor progression, such as inflammation, genomic instability, tumor growth, cancer stem cell formation, angiogenesis, EMT and metastasis, tissue remodeling, and immunosuppression, etc. In addition, we also discuss potential therapeutic strategies for targeting TAMs and explore how macrophages can be used as a tool for next-generation immunotherapy for the treatment of solid malignancies.

8.
Front Immunol ; 12: 793611, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35116028

RESUMEN

The parasites of the genus Leishmania survive and proliferate in the host phagocytic cells by taking control over their microbicidal functions. The parasite also promotes differentiation of antigen-specific anti-inflammatory cytokines producing effector T cells, which eventually results in disease pathogenesis. The mechanisms that parasites employ to dominate host adaptive immunity are largely unknown. For the first time, we report that L. donovani, which causes visceral leishmaniasis in the Indian subcontinent, upregulates the expression of an immune inhibitory receptor i.e., CD300a on antigen presenting and phagocytic cells to dampen their effector functions. The blocking of CD300a signals in leishmania antigens activated macrophages and dendritic cells enhanced the production of nitric oxide, pro-inflammatory cytokines along with MHCI/II genes expression, and reduced parasitic uptake. Further, the abrogation of CD300a signals in Leishmania infected mice benefited antigen-experienced, i.e., CD4+CD44+ and CD8+CD44+ T cells to acquire more pro-inflammatory cytokines producing phenotypes and helped in the early clearance of parasites from their visceral organs. The CD300a receptor blocking also enhanced the conversion of CD4+ T effectors cells to their memory phenotypes i.e., CCR7high CD62Lhigh up to 1.6 and 1.9 fold after 14 and 21 days post-infection, respectively. These findings implicate that CD300a is an important determinant of host phagocytic cells functions and T cells differentiation against Leishmania antigens.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Leishmaniasis Visceral/inmunología , Fagocitos/inmunología , Receptores Inmunológicos/inmunología , Linfocitos T/inmunología , Animales , Femenino , Leishmania donovani/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7
9.
Biochim Biophys Acta Proteins Proteom ; 1868(10): 140470, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32535275

RESUMEN

Mycobacterium is known for subverting the host defense machinery, and one such mechanism is the inhibition of autophagy. Here, we have demonstrated that Mycobacterium tuberculosis (MTB) secretes a virulence factor; an early secretory antigenic target protein (ESAT-6) into the phagosome, which induces the expression and activity of mitochondrial superoxide dismutase (SOD-2) of macrophages. Using a series of experiments, and Mycobacterium bovis BCG as a model strain (where ESAT-6 protein is not expressed), we have delineated that the protein regulates SOD-2 of macrophages. The expression and augmentation of SOD-2 activity were confirmed by either incubating the macrophages with ESAT-6 protein, transfection of macrophage by esat6 gene using a eukaryotic promoter vector, or by infection with different mycobacterial strains. The induction of acidification of phagosomal compartment containing bacteria was observed in cells that express low levels of SOD-2. This was further confirmed by observing a significant decrease in the M. bovis BCG intracellular load in the sod-2 knocked-down macrophages.


Asunto(s)
Antígenos Bacterianos/metabolismo , Autofagia , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Infecciones por Mycobacterium/metabolismo , Infecciones por Mycobacterium/microbiología , Mycobacterium bovis/fisiología , Superóxido Dismutasa/metabolismo , Animales , Autofagosomas , Línea Celular , Activación Enzimática , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Viabilidad Microbiana , Recombinación Genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
Biochem J ; 475(21): 3393-3416, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30266832

RESUMEN

Rv3488 of Mycobacterium tuberculosis H37Rv has been assigned to the phenolic acid decarboxylase repressor (PadR) family of transcriptional regulators that play key roles in multidrug resistance and virulence of prokaryotes. The binding of cadmium, zinc, and several other metals to Rv3488 was discovered and characterized by isothermal titration calorimetery to be an exothermic process. Crystal structures of apo-Rv3488 and Rv3488 in complex with cadmium or zinc ions were determined by X-ray crystallography. The structure of Rv3488 revealed a dimeric protein with N-terminal winged-helix-turn-helix DNA-binding domains composed of helices α1, α2, α3, and strands ß1 and ß2, with the dimerization interface being formed of helices α4 and α1. The overall fold of Rv3488 was similar to PadR-s2 and metal sensor transcriptional regulators. In the crystal structure of Rv3488-Cd complex, two octahedrally coordinated Cd2+ ions were present, one for each subunit. The same sites were occupied by zinc ions in the structure of Rv3488-Zn, with two additional zinc ions complexed in one monomer. EMSA studies showed specific binding of Rv3488 with its own 30-bp promoter DNA. The functional role of Rv3488 was characterized by expressing the rv3488 gene under the control of hsp60 promoter in Mycobacterium smegmatis Expression of Rv3488 increased the intracellular survival of recombinant M. smegmatis in murine macrophage cell line J774A.1 and also augmented its tolerance to Cd2+ ions. Overall, the studies show that Rv3488 may have transcription regulation and metal-detoxifying functions and its expression in M. smegmatis increases intracellular survival, perhaps by counteracting toxic metal stress.


Asunto(s)
Proteínas Bacterianas/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/genética , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Línea Celular , Cristalografía por Rayos X , Metales/química , Metales/metabolismo , Ratones , Modelos Moleculares , Mycobacterium/clasificación , Mycobacterium/genética , Mycobacterium/metabolismo , Mycobacterium tuberculosis/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Conejos , Homología de Secuencia de Aminoácido
11.
Med Hypotheses ; 115: 77-80, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29685203

RESUMEN

Isoprinosine (Inos) or immunovir is a synthetic purine derivative with immune-modulatory and antiviral properties. The drug shows apparent in vivo enhancement of host immune responses by inducing pro-inflammatory cytokines and rapid proliferation of T-cell subsets. Strikingly, the cytokines induced by Inos also play crucial roles in providing immune resistance against Mycobacterium tuberculosis (Mtb). Inos has been licensed for several antiviral diseases; however, its efficacy against Mtb has not been tested yet. Since Mtb subverts the host immune system to survive within the host. Therefore, we hypothesized that the immune-stimulatory properties of Inos can be explored as an adjunct therapy for the management of tuberculosis. We have also outlined a systematic direction of study to evaluate if Inos could be repurposed for tuberculosis. The in vivo studies for therapeutic evaluation of Inos alone or in combination with the first line anti-TB drugs in a suitable TB disease model would provide a clearer picture of its utility as a host-directed anti-TB drug and may endow us with a new application of an existing drug to combat tuberculosis.


Asunto(s)
Antituberculosos/uso terapéutico , Inosina Pranobex/uso terapéutico , Tuberculosis/tratamiento farmacológico , Adyuvantes Inmunológicos/uso terapéutico , Quimioterapia Adyuvante , Citocinas/metabolismo , Reposicionamiento de Medicamentos , Humanos , Modelos Inmunológicos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología
12.
Biochem J ; 474(24): 4119-4136, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29101285

RESUMEN

The remarkable ability of Mycobacterium tuberculosis (Mtb) to survive inside human macrophages is attributed to the presence of a complex sensory and regulatory network. PrrA is a DNA-binding regulatory protein, belonging to an essential two-component system (TCS), PrrA/B, which is required for early phase intracellular replication of Mtb. Despite its importance, the mechanism of PrrA/B-mediated signaling is not well understood. In the present study, we demonstrate that the binding of PrrA on the promoter DNA and its consequent activation is cumulatively controlled via dual phosphorylation of the protein. We have further characterized the role of terminal phospho-acceptor domain in the physical interaction of PrrA with its cognate kinase PrrB. The genetic deletion of prrA/B in Mycobacterium smegmatis was possible only in the presence of ectopic copies of the genes, suggesting the essentiality of this TCS in fast-growing mycobacterial strains as well. The overexpression of phospho-mimetic mutant (T6D) altered the growth of M. smegmatis in an in vitro culture and affected the replication of Mycobacterium bovis BCG in mouse peritoneal macrophages. Interestingly, the Thr6 site was found to be conserved in Mtb complex, whereas it was altered in some fast-growing mycobacterial strains, indicating that this unique phosphorylation might be predominant in employing the regulatory circuit in M. bovis BCG and presumably also in Mtb complex.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Líquido Intracelular/metabolismo , Mycobacterium tuberculosis/metabolismo , Activación Transcripcional/fisiología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Células HeLa , Humanos , Líquido Intracelular/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/genética , Fosforilación/fisiología , Conejos
13.
Biochem Biophys Res Commun ; 494(3-4): 433-439, 2017 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-29032183

RESUMEN

Early secretory antigenic target protein (ESAT-6) is an important virulent factor which plays a crucial role in Mycobacterium tuberculosis (MTB) pathogenesis. Here, we demonstrate the role of ESAT-6 in phagocytosis and intracellular survival of mycobacteria through a mechanism mediated by regulation of a host protein; Peroxiredoxin-1 (Prdx-1). Prdx-1 is an anti-apoptotic and stress response protein which protects cells from damage by ROS and H2O2. The J774 A.1 cells infected with MTB or over-expressing ESAT-6 through eukaryotic promoter vector showed elevated expression of Prdx-1. Further investigation revealed that the up-regulation of Prdx-1 is mediated through the activation of one of the MAP kinases, p38. The NRF-2, a transcriptional activator of Prdx-1 is translocated to the nucleus upon phosphorylation by p38 and subsequently, regulates expression of Prdx-1. Inhibition of the p38 MAPK by a specific inhibitor, SB203580, abrogates the ESAT-6 mediated induction of Prdx-1 expression as well as the phosphorylation of NRF-2 in a time-dependent manner. The inhibition of Prdx-1 expression by specific siRNA in J774 A.1 cells resulted in the reduced bacterial uptake and intracellular survival of the mycobacteria. This is the first report proclaiming that the ESAT-6 regulates Prdx-1 which is involved in the increase of mycobacterial uptake and survival. The intermediate mechanisms involve the increased Prdx-1 production in macrophages through the activation of p38 and NRF-2 dependent signaling.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Supervivencia Celular/fisiología , Macrófagos/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/fisiología , Peroxirredoxinas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Activación Enzimática , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA