Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
HGG Adv ; 4(4): 100237, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37705246

RESUMEN

The ABCA4 gene is the most frequently mutated Mendelian retinopathy-associated gene. Biallelic variants lead to a variety of phenotypes, however, for thousands of cases the underlying variants remain unknown. Here, we aim to shed further light on the missing heritability of ABCA4-associated retinopathy by analyzing a large cohort of macular dystrophy probands. A total of 858 probands were collected from 26 centers, of whom 722 carried no or one pathogenic ABCA4 variant, while 136 cases carried two ABCA4 alleles, one of which was a frequent mild variant, suggesting that deep-intronic variants (DIVs) or other cis-modifiers might have been missed. After single molecule molecular inversion probes (smMIPs)-based sequencing of the complete 128-kb ABCA4 locus, the effect of putative splice variants was assessed in vitro by midigene splice assays in HEK293T cells. The breakpoints of copy number variants (CNVs) were determined by junction PCR and Sanger sequencing. ABCA4 sequence analysis solved 207 of 520 (39.8%) naive or unsolved cases and 70 of 202 (34.7%) monoallelic cases, while additional causal variants were identified in 54 of 136 (39.7%) probands carrying two variants. Seven novel DIVs and six novel non-canonical splice site variants were detected in a total of 35 alleles and characterized, including the c.6283-321C>G variant leading to a complex splicing defect. Additionally, four novel CNVs were identified and characterized in five alleles. These results confirm that smMIPs-based sequencing of the complete ABCA4 gene provides a cost-effective method to genetically solve retinopathy cases and that several rare structural and splice altering defects remain undiscovered in Stargardt disease cases.


Asunto(s)
Degeneración Macular , Distrofias Retinianas , Humanos , Células HEK293 , Mutación/genética , Degeneración Macular/genética , Distrofias Retinianas/genética , Análisis de Secuencia , Transportadoras de Casetes de Unión a ATP/genética
2.
Circ Genom Precis Med ; 15(4): e003527, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35583931

RESUMEN

BACKGROUND: Spontaneous coronary artery dissection (SCAD) is a cause of acute coronary syndrome that predominantly affects women. Its pathophysiology remains unclear but connective tissue disorders (CTD) and other vasculopathies have been observed in many SCAD patients. A genetic component for SCAD is increasingly appreciated, although few genes have been robustly implicated. We sought to clarify the genetic cause of SCAD using targeted and genome-wide methods in a cohort of sporadic cases to identify both common and rare disease-associated variants. METHODS: A cohort of 91 unrelated sporadic SCAD cases was investigated for rare, deleterious variants in genes associated with either SCAD or CTD, while new candidate genes were sought using rare variant collapsing analysis and identification of novel loss-of-function variants in genes intolerant to such variation. Finally, 2 SCAD polygenic risk scores were applied to assess the contribution of common variants. RESULTS: We identified 10 cases with at least one rare, likely disease-causing variant in CTD-associated genes, although only one had a CTD phenotype. No genes were significantly associated with SCAD from genome-wide collapsing analysis, however, enrichment for TGF (transforming growth factor)-ß signaling pathway genes was found with analysis of 24 genes harboring novel loss-of-function variants. Both polygenic risk scores demonstrated that sporadic SCAD cases have a significantly elevated genetic SCAD risk compared with controls. CONCLUSIONS: SCAD shares some genetic overlap with CTD, even in the absence of any major CTD phenotype. Consistent with a complex genetic architecture, SCAD patients also have a higher burden of common variants than controls.


Asunto(s)
Síndrome Coronario Agudo , Anomalías de los Vasos Coronarios , Enfermedades Vasculares , Anomalías de los Vasos Coronarios/genética , Femenino , Humanos , Enfermedades Vasculares/congénito , Enfermedades Vasculares/genética
3.
Invest Ophthalmol Vis Sci ; 63(4): 20, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35475888

RESUMEN

Purpose: The effect of noncoding variants is often unknown in the absence of functional assays. Here, we characterized an ABCA4 intron 7 variant, c.859-25A>G, identified in Palestinian probands with Stargardt disease (STGD) or cone-rod dystrophy (CRD). We investigated the effect of this variant on the ABCA4 mRNA and retinal phenotype, and its prevalence in Palestine. Methods: The ABCA4 gene was sequenced completely or partially in 1998 cases with STGD or CRD. The effect of c.859-25A>G on splicing was investigated in silico using SpliceAI and in vitro using splice assays. Homozygosity mapping was performed for 16 affected individuals homozygous for c.859-25A>G. The clinical phenotype was assessed using functional and structural analyses including visual acuity, full-field electroretinography, and multimodal imaging. Results: The smMIPs-based ABCA4 sequencing revealed c.859-25A>G in 10 Palestinian probands from Hebron and Jerusalem. SpliceAI predicted a significant effect of this putative branchpoint-inactivating variant on the nearby intron 7 splice acceptor site. Splice assays revealed exon 8 skipping and two partial inclusions of intron 7, each having a deleterious effect. Additional genotyping revealed another 46 affected homozygous or compound heterozygous individuals carrying variant c.859-25A>G. Homozygotes shared a genomic segment of 59.6 to 87.9 kb and showed severe retinal defects on ophthalmoscopic evaluation. Conclusions: The ABCA4 variant c.859-25A>G disrupts a predicted branchpoint, resulting in protein truncation because of different splice defects, and is associated with early-onset STGD1 when present in homozygosity. This variant was found in 25/525 Palestinian inherited retinal dystrophy probands, representing one of the most frequent inherited retinal disease-causing variants in West-Bank Palestine.


Asunto(s)
Árabes , Distrofias de Conos y Bastones , Intrones , Enfermedad de Stargardt , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Árabes/genética , Distrofias de Conos y Bastones/genética , Humanos , Intrones/genética , Mutación , Linaje , Enfermedad de Stargardt/genética
4.
Genet Med ; 22(7): 1235-1246, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32307445

RESUMEN

PURPOSE: Missing heritability in human diseases represents a major challenge, and this is particularly true for ABCA4-associated Stargardt disease (STGD1). We aimed to elucidate the genomic and transcriptomic variation in 1054 unsolved STGD and STGD-like probands. METHODS: Sequencing of the complete 128-kb ABCA4 gene was performed using single-molecule molecular inversion probes (smMIPs), based on a semiautomated and cost-effective method. Structural variants (SVs) were identified using relative read coverage analyses and putative splice defects were studied using in vitro assays. RESULTS: In 448 biallelic probands 14 known and 13 novel deep-intronic variants were found, resulting in pseudoexon (PE) insertions or exon elongations in 105 alleles. Intriguingly, intron 13 variants c.1938-621G>A and c.1938-514G>A resulted in dual PE insertions consisting of the same upstream, but different downstream PEs. The intron 44 variant c.6148-84A>T resulted in two PE insertions and flanking exon deletions. Eleven distinct large deletions were found, two of which contained small inverted segments. Uniparental isodisomy of chromosome 1 was identified in one proband. CONCLUSION: Deep sequencing of ABCA4 and midigene-based splice assays allowed the identification of SVs and causal deep-intronic variants in 25% of biallelic STGD1 cases, which represents a model study that can be applied to other inherited diseases.


Asunto(s)
Degeneración Macular , Transcriptoma , Transportadoras de Casetes de Unión a ATP/genética , Genómica , Humanos , Intrones , Degeneración Macular/genética , Mutación , Linaje , Enfermedad de Stargardt
5.
Stem Cell Res ; 41: 101584, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31707208

RESUMEN

Spontaneous coronary artery dissection (SCAD) is a non-atherosclerotic form of coronary artery disease of unknown cause that predominantly affects women (>90%; mean age 44-55 years) and can be fatal. The finding of familial clustering, including the concordant involvement of monozygotic twins, and its association with the PHACTR1/EDN1 genetic locus, indicate a genetic predisposition to its pathophysiology. A human induced pluripotent stem cell line (hiPSC) was generated from a patient who had survived an episode of SCAD. This disease-specific hiPSC line will be useful for the study of SCAD after differentiation into blood vessel-forming cells.


Asunto(s)
Diferenciación Celular , Anomalías de los Vasos Coronarios/patología , Células Madre Pluripotentes Inducidas/patología , Leucocitos Mononucleares/patología , Enfermedades Vasculares/congénito , Células Cultivadas , Femenino , Humanos , Persona de Mediana Edad , Enfermedades Vasculares/patología
6.
Methods Mol Biol ; 1940: 47-61, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30788817

RESUMEN

Lentiviral gene transfer technologies exploit the natural efficiency of viral transduction to integrate exogenous genes into mammalian cells. This provides a simple research tool for inducing transgene expression or endogenous gene knockdown in both dividing and nondividing cells. This chapter describes an improved protocol for polyethylenimine (PEI)-mediated multi-plasmid transfection and polyethylene glycol (PEG) precipitation to generate and concentrate lentiviral vectors.


Asunto(s)
Fibroblastos/virología , Técnicas de Transferencia de Gen , Lentivirus/crecimiento & desarrollo , Lentivirus/genética , Plásmidos/genética , Animales , Línea Celular , Vectores Genéticos/genética , Células HEK293 , Humanos , Ratones , Polietilenglicoles/química , Polietileneimina/química
7.
J Am Coll Cardiol ; 73(1): 58-66, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30621952

RESUMEN

BACKGROUND: Spontaneous coronary artery dissection (SCAD) is an increasingly recognized cause of acute coronary syndromes (ACS) afflicting predominantly younger to middle-aged women. Observational studies have reported a high prevalence of extracoronary vascular anomalies, especially fibromuscular dysplasia (FMD) and a low prevalence of coincidental cases of atherosclerosis. PHACTR1/EDN1 is a genetic risk locus for several vascular diseases, including FMD and coronary artery disease, with the putative causal noncoding variant at the rs9349379 locus acting as a potential enhancer for the endothelin-1 (EDN1) gene. OBJECTIVES: This study sought to test the association between the rs9349379 genotype and SCAD. METHODS: Results from case control studies from France, United Kingdom, United States, and Australia were analyzed to test the association with SCAD risk, including age at first event, pregnancy-associated SCAD (P-SCAD), and recurrent SCAD. RESULTS: The previously reported risk allele for FMD (rs9349379-A) was associated with a higher risk of SCAD in all studies. In a meta-analysis of 1,055 SCAD patients and 7,190 controls, the odds ratio (OR) was 1.67 (95% confidence interval [CI]: 1.50 to 1.86) per copy of rs9349379-A. In a subset of 491 SCAD patients, the OR estimate was found to be higher for the association with SCAD in patients without FMD (OR: 1.89; 95% CI: 1.53 to 2.33) than in SCAD cases with FMD (OR: 1.60; 95% CI: 1.28 to 1.99). There was no effect of genotype on age at first event, P-SCAD, or recurrence. CONCLUSIONS: The first genetic risk factor for SCAD was identified in the largest study conducted to date for this condition. This genetic link may contribute to the clinical overlap between SCAD and FMD.


Asunto(s)
Anomalías de los Vasos Coronarios/epidemiología , Anomalías de los Vasos Coronarios/genética , Endotelina-1/genética , Displasia Fibromuscular/complicaciones , Sitios Genéticos/genética , Proteínas de Microfilamentos/genética , Enfermedades Vasculares/congénito , Adulto , Anciano , Australia , Estudios de Casos y Controles , Anomalías de los Vasos Coronarios/complicaciones , Femenino , Displasia Fibromuscular/genética , Francia , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Reino Unido , Estados Unidos , Enfermedades Vasculares/complicaciones , Enfermedades Vasculares/epidemiología , Enfermedades Vasculares/genética
8.
Nat Methods ; 14(11): 1055-1062, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28945704

RESUMEN

Recent reports on the characteristics of naive human pluripotent stem cells (hPSCs) obtained using independent methods differ. Naive hPSCs have been mainly derived by conversion from primed hPSCs or by direct derivation from human embryos rather than by somatic cell reprogramming. To provide an unbiased molecular and functional reference, we derived genetically matched naive hPSCs by direct reprogramming of fibroblasts and by primed-to-naive conversion using different naive conditions (NHSM, RSeT, 5iLAF and t2iLGöY). Our results show that hPSCs obtained in these different conditions display a spectrum of naive characteristics. Furthermore, our characterization identifies KLF4 as sufficient for conversion of primed hPSCs into naive t2iLGöY hPSCs, underscoring the role that reprogramming factors can play for the derivation of bona fide naive hPSCs.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes/citología , Diferenciación Celular , Fibroblastos/citología , Inestabilidad Genómica , Humanos , Factor 4 Similar a Kruppel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA