Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cureus ; 15(10): e48035, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38034210

RESUMEN

Introduction The under-five age group is crucial because the health profile of this age group will have a huge effect on the future development of the nation. Early infancy is marked by several distinct developmental characteristics. Progress in each domain of childhood development is used to track a child's development. Objectives The objectives of the present study were to assess and compare the growth of under-five children of employed and unemployed mothers in the Etawah District of Uttar Pradesh, India. Material and methods A community-based cross-sectional survey was carried out in Etawah district's urban and rural areas between January 2021 and June 2022. A total of 200 mothers with children under the age of five were recruited using the purposive sampling method. To gather pertinent information, a semi-structured, pre-tested, interviewer-administered questionnaire was used. Results In the present study on the comparison of the growth of children among employed and unemployed mothers, it shows that 48 children (50.5%) with a weight between 10.5 and 15 kg were of employed mothers, while 52 children weighing less than 10.5kg were of unemployed mothers (p<0.001). Forty-four children (57.1%) with a chest circumference of more than 48 cm were of employed mothers, while 26 children (78.8%) with a chest circumference of less than 45 cm were of unemployed mothers (p = 0.001). Conclusion The present study indicates that statistically significant differences were found in age-appropriate gain in weight and chest circumference, which was higher among the children of employed mothers in comparison to children of unemployed mothers. There was no statistically significant difference in age-appropriate gain in height, head circumference, or mid-upper arm circumference among the children of employed mothers and unemployed mothers.

2.
Drug Res (Stuttg) ; 73(7): 369-377, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37276884

RESUMEN

The continuous implementation of Artificial Intelligence (AI) in multiple scientific domains and the rapid advancement in computer software and hardware, along with other parameters, have rapidly fuelled this development. The technology can contribute effectively in solving many challenges and constraints in the traditional development of the drug. Traditionally, large-scale chemical libraries are screened to find one promising medicine. In recent years, more reasonable structure-based drug design approaches have avoided the first screening phases while still requiring chemists to design, synthesize, and test a wide range of compounds to produce possible novel medications. The process of turning a promising chemical into a medicinal candidate can be expensive and time-consuming. Additionally, a new medication candidate may still fail in clinical trials even after demonstrating promise in laboratory research. In fact, less than 10% of medication candidates that undergo Phase I trials really reach the market. As a consequence, the unmatched data processing power of AI systems may expedite and enhance the drug development process in four different ways: by opening up links to novel biological systems, superior or distinctive chemistry, greater success rates, and faster and less expensive innovation trials. Since these technologies may be used to address a variety of discovery scenarios and biological targets, it is essential to comprehend and distinguish between use cases. As a result, we have emphasized how AI may be used in a variety of areas of the pharmaceutical sciences, including in-depth opportunities for drug research and development.


Asunto(s)
Inteligencia Artificial , Descubrimiento de Drogas , Diseño de Fármacos , Programas Informáticos , Computadores
4.
Virusdisease ; : 1-19, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37363363

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is related with the COVID-19 pandemic. Recent spike protein variations have had an effect on the transmission of the virus. In addition to ACE-2, spike proteins can employ DC-SIGN and its analogous receptor, DC-SIGNR, for host evasion. Spike variations in the DC-SIGN interaction region and role of DC-SIGN in immune evasion have not been well defined. To understand the spike protein variations and their binding mode, phylogenetic analysis of the complete GISAID (Global Initiative for Sharing Avian Influenza Data) data of the SARS-CoV-2 spike protein was considered. In addition, an in silico knockout network evaluation of the SARS-CoV-2 single-cell transcriptome was conducted to determine the key role of DC-SIGN/R in immunological dysregulation. Within the DC-SIGN-interacting region of the SARS-CoV spike protein, the spike protein of SARS-CoV-2 displayed remarkable similarity to the SARS-CoV spike protein. Surprisingly, the phylogenetic analysis revealed that the SARS-CoV-2's spike exhibited significantly diverse variants in the DC-SIGN interaction domain, which altered the frequency of these variants. The variation within the DC-SIGN-interacting domain of spike proteins affected the binding of a limited number of variants with DC-SIGN and DC-SIGNR and affected their evolution. MMGBSA binding free energies evaluation differed for variants from those of the wild type, suggesting the influence of substitution mutations on the interaction pattern. In silico knockout network analysis of the single-cell transcriptome of Bronchoalveolar Lavage and peripheral blood mononuclear cells revealed that SARS-CoV-2 altered DC-SIGN/R signaling. Early surveillance of diverse SARS-CoV-2 strains could preclude a worsening of the pandemic and facilitate the development of an optimum vaccine against variations. The spike Receptor Binding Domain genetic variants are thought to boost SARS CoV-2 immune evasion, resulting in its higher longevity. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-023-00820-3.

5.
Molecules ; 27(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36235264

RESUMEN

Curcumin is a hydrophobic polyphenol derived from turmeric with potent anti-oxidant, anti-microbial, anti-inflammatory and anti-carcinogenic effects. Curcumin is degraded into various derivatives under in vitro and in vivo conditions, and it appears that its degradation may be responsible for the pharmacological effects of curcumin. The primary risk factor for the cause of gastric cancer is Helicobacter pylori (H. pylori). A virulence factor vacuolating cytotoxic A (VacA) is secreted by H. pylori as a 88 kDa monomer (p88), which can be fragmented into a 33 kDa N-terminal domain (p33) and a 55 kDa C-terminal domain (p55). Recently it has been reported that curcumin oxidation is required to inhibit the activity of another major H.pylori toxin CagA. We performed molecular docking of curcumin and its oxidative derivatives with p33 and p55 domains of VacA. Further, we have examined the effect of the oxidation of curcumin on the vacuolation activity of VacA protein. We observed the binding of curcumin to the p55 domain of VacA at five different sites with moderate binding affinities. Curcumin did not bind to p33 domain of VacA. Remarkably, cyclobutyl cyclopentadione and dihydroxy cyclopentadione, which are oxidized products of curcumin, showed a higher binding affinity with VacA protein at all sites except one as compared to parent curcumin itself. However, cyclobutyl cyclopentadione showed a significant binding affinity for the active site 5 of the p55 protein. Active site five (312-422) of p55 domain of VacA plays a crucial role in VacA-mediated vacuole formation. Invitro experiments showed that curcumin inhibited the vacuolation activity of H. pylori in human gastric cell line AGS cells whereas acetyl and diacetyl curcumin, which cannot be oxidized, failed to inhibit the vacuolation in AGS cells after H. pylori infection. Here our data showed that oxidation is essential for the activity of curcumin in inhibiting the vacuolation activity of H. pylori. Synthesis of these oxidized curcumin derivatives could potentially provide new therapeutic drug molecules for inhibiting H. pylori-mediated pathogenesis.


Asunto(s)
Anticarcinógenos , Antineoplásicos , Curcumina , Infecciones por Helicobacter , Helicobacter pylori , Anticarcinógenos/metabolismo , Antineoplásicos/metabolismo , Antioxidantes/metabolismo , Proteínas Bacterianas/metabolismo , Curcumina/metabolismo , Curcumina/farmacología , Diacetil/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Polifenoles/metabolismo , Vacuolas/metabolismo , Factores de Virulencia/metabolismo
6.
Drug Res (Stuttg) ; 72(7): 355-366, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35636435

RESUMEN

The rapid advancement of nanomedicine presents novel alternatives that have the potential to transform health care. Targeted drug delivery as well as the synthesis of nanocarriers is a growing discipline that has been intensively researched to reduce the complexity of present medicines in a variety of diseases and to develop new treatment and diagnostic techniques. There are several designed nanomaterials used as a delivery system such as liposomes, micelles, dendrimers, polymers, carbon-based materials, and many other substances, which deliver the drug moiety directly into its targeted body area reducing toxic effect of conventional drug delivery, thus reducing the amount of drug required for therapeutic efficacy and offering many more advantages. Currently, these are used in many applications, including cancer treatment, imaging contrast agents, and biomarker detection and so on. This review provides a comprehensive update in the field of targeted nano-based drug delivery systems, by conducting a thorough examination of the drug synthesis, types, targets, and application of nanomedicines in improving the therapeutic efficiency.


Asunto(s)
Nanopartículas , Nanoestructuras , Neoplasias , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos , Liposomas , Micelas , Nanomedicina/métodos , Neoplasias/tratamiento farmacológico
7.
Mol Cell Neurosci ; 112: 103612, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33722677

RESUMEN

The multifactorial neurological condition called Alzheimer's disease (AD) primarily affects elderly individuals. Despite the calamitous consequences of AD, curative strategies for a regimen to apply remain inadequate as several factors contribute to AD etiology. Drug repurposing is an advance strategy prior to drug discovery as various effective drugs perform through alteration of multiple targets, and the present "poly-pharmacology" can be a curative approach to complex disorders. AD's multifactorial behavior actively encourages the hypothesis for a drug design approach focused on drug repurposing. In this study, we discovered that an antifungal drug, Caspofungin (CAS) is a potent Aß aggregation inhibitor that displays significantly reduced toxicity associated with AD. Drug reprofiling and REMD simulations demonstrated that CAS interacts with the ß-sheet section, known as Aß amyloid fibrils hotspot. CAS leads to destabilization of ß-sheet and, conclusively, in its devaluation. Later, in vitro experiments were acquired in which the fibrillar volume was reduced for CAS-treated Aß peptide. For the first time ever, this study has determined an antifungal agent as the Aß amyloid aggregation's potent inhibitor. Several efficient sequence-reliant potent inhibitors can be developed in future against the amyloid aggregation for different amyloid peptide by the processing and conformational optimization of CAS.


Asunto(s)
Péptidos beta-Amiloides/efectos de los fármacos , Antifúngicos/farmacología , Caspofungina/farmacología , Agregación Patológica de Proteínas/prevención & control , Enfermedad de Alzheimer/tratamiento farmacológico , Secuencia de Aminoácidos , Animales , Antifúngicos/uso terapéutico , Caspofungina/uso terapéutico , Reposicionamiento de Medicamentos , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Agregación Patológica de Proteínas/tratamiento farmacológico , Conformación Proteica , Estructura Secundaria de Proteína/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...