Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687369

RESUMEN

The ability to detect, measure, and locate the source of contaminants, especially heavy metals and radionuclides, is of ongoing interest. A common tool for contaminant identification and bioremediation is vegetation that can accumulate and indicate recent and historic pollution. However, large-scale sampling can be costly and labor-intensive. Hence, non-invasive in-situ techniques such as laser-induced fluorescence (LIF) are becoming useful and effective ways to observe the health of plants through the excitation of organic molecules, e.g., chlorophyll. The technique presented utilizes images collected of LIF in moss to identify different metals and environmental stressors. Analysis through image processing of LIF response was key to identifying Cu, Zn, Pb, and a mixture of the metals at nmol/cm2 levels. Specifically, the RGB values from each image were used to create density histograms of each color channel's relative pixel abundance at each decimal code value. These histograms were then used to compare color shifts linked to the successful identification of contaminated moss samples. Photoperiod and extraneous environmental stressors had minimal impact on the histogram color shift compared to metals and presented with a response that differentiated them from metal contamination.

2.
Sci Rep ; 12(1): 10164, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715549

RESUMEN

The "Search for life", which may be extinct or extant on other planetary bodies is one of the major goals of NASA planetary exploration missions. Finding such evidence of biological residue in a vast planetary landscape is an enormous challenge. We have developed a highly sensitive instrument, the "Compact Color Biofinder", which can locate minute amounts of biological material in a large area at video speed from a standoff distance. Here we demonstrate the efficacy of the Biofinder to detect fossils that still possess strong bio-fluorescence signals from a collection of samples. Fluorescence images taken by the Biofinder instrument show that all Knightia spp. fish fossils analysed from the Green River formation (Eocene, 56.0-33.9 Mya) still contain considerable amounts of biological residues. The biofluorescence images support the fact that organic matter has been well preserved in the Green River formation, and thus, not diagenetically replaced (replaced by minerals) over such a significant timescale. We further corroborated results from the Biofinder fluorescence imagery through Raman and attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopies, scanning electron microscopy, energy dispersive X-ray spectroscopy (SEM-EDS), and fluorescence lifetime imaging microscopy (FLIM). Our findings confirm once more that biological residues can survive millions of years, and that using biofluorescence imaging effectively detects these trace residues in real time. We anticipate that fluorescence imaging will be critical in future NASA missions to detect organics and the existence of life on other planetary bodies.


Asunto(s)
Fósiles , Planetas , Animales , Minerales/análisis , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
3.
J Phys Chem A ; 126(1): 125-144, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-34935392

RESUMEN

We report the results on the combustion of single, levitated droplets of exo-tetrahydrodicyclopentadiene (JP-10) doped with titanium-aluminum-boron (Ti-Al-B) reactive metal nanopowders (RMNPs) in an oxygen (60%)-argon (40%) atmosphere by exploiting an ultrasonic levitator with droplets ignited by a carbon dioxide laser. Ultraviolet-visible (UV-vis) emission spectroscopy revealed the presence of gas-phase aluminum (Al) and titanium (Ti) atoms. These atoms can be oxidized in the gas phase by molecular oxygen to form spectroscopically detected aluminum monoxide (AlO) and titanium monoxide (TiO) transients. Analysis of the optical ignition videos supports that the nanoparticles are ignited before JP-10. The detection of boron monoxide (BO) further proposes an active surface chemistry through the oxidation of the RMNPs and the release of at least BO into the gas phase. The oxidation of gas-phase BO by molecular oxygen to boron dioxide (BO2) plus atomic oxygen might operate in the gas phase, although the involvement of surface oxidation processes of RMNPs to BO2 cannot be discounted. The UV-vis emission spectra also revealed the key reactive intermediates (OH, CH, C2, and HCO) of the oxidation of JP-10. Electronic structure calculations reveal that the presence of reactive radicals has a profound impact on the oxidation of JP-10. Although titanium monoxide (TiO) reacts to produce titanium dioxide (TiO2), it does not engage in an active JP-10 chemistry as all abstraction pathways are endoergic by more than 217 kJ mol-1. This is similar for atomic aluminum and titanium, whose hydrogen abstraction reactions from JP-10 were revealed to be endoergic by at least 77 kJ mol-1. Therefore, aluminum and titanium react preferentially with molecular oxygen to produce their monoxides. However, the formation of BO, AlO, and BO2 supplies a pool of highly reactive radicals, which can abstract hydrogen from JP-10 via transition states ranging from only 1 to 5 kJ mol-1 above the separated reactants, forming JP-10 radicals along with the hydrogen abstraction products (boron hydride oxide, aluminum monohydroxide, and metaboric acid) in the overall exoergic reactions. These abstraction barriers are well below the barriers of abstractions for ground-state atomic oxygen and molecular oxygen. In this sense, gas-phase BO, AlO, and BO2 catalyze the oxidation of gas-phase JP-10 via hydrogen abstraction, forming highly reactive JP-10 radicals. Overall, the addition of RMNPs to JP-10 not only provides a higher energy density fuel but is also expected to lead to shorter ignition delays compared to pure JP-10 due to the highly reactive pool of radicals (BO, AlO, and BO2) formed in the initial stage of the oxidation process.

4.
Nanomaterials (Basel) ; 11(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34684970

RESUMEN

Fluorescence spectra of graphitic (g-C3N4) and spherical (s-C3N4) modifications of carbon nitride were measured as a function of green pulsed (6 ns-pulse) laser intensity. It was found that the intensity of the laser increases the maximum of the fluorescence shifts towards the anti-Stokes side of the fluorescence for s-C3N4 spherical nanoparticles. This phenomenon was not observed for g-C3N4 particles. The maximum of the anti-Stokes fluorescence in s-C3N4 nanoparticles was observed at 480 nm. The ratio of the intensity of the anti-Stokes peak (centered at 480 nm) to that of the Stokes peak (centered at 582 nm) was measured to be I484/582 = 6.4 × 10-3 at a low level of intensity (5 mW) of a green pulsed laser, whereas it rose to I484/582 = 2.27 with a high level of laser intensity (1500 mW).

5.
Appl Spectrosc ; 75(11): 1427-1436, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34309445

RESUMEN

We have developed a compact instrument called the "COmpact COlor BIofinder", or CoCoBi, for the standoff detection of biological materials and organics with polyaromatic hydrocarbons (PAHs) using a nondestructive approach in a wide area. The CoCoBi system uses a compact solid state, conductively cooled neodymium-doped yttrium aluminum garnet (Nd:YAG) nanosecond pulsed laser capable of simultaneously providing two excitation wavelengths, 355 and 532 nm, and a compact, sensitive-gated color complementary metal-oxide-semiconductor camera detector. The system is compact, portable, and determines the location of biological materials and organics with PAHs in an area 1590 cm2 wide, from a target distance of 3 m through live video using fast fluorescence signals. The CoCoBi system is highly sensitive and capable of detecting a PAH concentration below 1 part per billion from a distance of 1 m. The color images provide the simultaneous detection of various objects in the target area using shades of color and morphological features. We demonstrate that this unique feature successfully detected the biological remains present in a 150-million-year-old fossil buried in a fluorescent clay matrix. The CoCoBi was also successfully field-tested in Hawaiian ocean water during daylight hours for the detection of natural biological materials present in the ocean. The wide-area and video-speed imaging capabilities of CoCoBi for biodetection may be highly useful in future NASA rover-lander life detection missions.


Asunto(s)
Láseres de Estado Sólido , Fluorescencia , Fósiles , Hidrocarburos
6.
Appl Opt ; 60(13): 3753-3763, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33983308

RESUMEN

OrganiCam is a laser-induced luminescence imager and spectrometer designed for standoff organic and biosignature detection on planetary bodies. OrganiCam uses a diffused laser beam (12° cone) to cover a large area at several meters distance and records luminescence on half of its intensified detector. The diffuser can be removed to record Raman and fluorescence spectra from a small spot from 2 m standoff distance. OrganiCam's small size and light weight makes it ideal for surveying organics on planetary surfaces. We have designed and built a brassboard version of the OrganiCam instrument and performed initial tests of the system.

7.
Appl Spectrosc ; 75(6): 739-746, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33635100

RESUMEN

We describe the fabrication of an underwater time-gated standoff Raman sensor, consisting of a custom Raman spectrometer, custom scanner, and commercial diode-pumped pulsed 532 nm laser all located inside a pressure housing. The Raman sensor was tested in the laboratory with samples in air, a tank containing tap water and seawater, and in the coastal Hawaiian harbor. We demonstrate our new system by presenting standoff Raman spectra of some of the chemicals used in homemade explosive devices and improvised explosive devices, including sulfur, nitrates, chlorates, and perchlorates up to a distance of ∼6 m in seawater and tap water. Finally, the Raman spectra of these hazardous chemicals sealed inside plastic containers submersed in the Hawaiian Harbor water are also presented.

8.
Appl Spectrosc ; 75(3): 299-306, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32613858

RESUMEN

Raman spectroscopy is a technique that can detect and characterize a range of molecular compounds such as water, water ice, water-bearing minerals, and organics of particular interest to planetary science. The detection and characterization of these molecular compounds, which are indications of habitability on planetary bodies, have become an important goal for planetary exploration missions spanning the solar system. Using a compact portable remote Raman system consisting of a 532 nm neodymium-doped yttrium aluminum garnet- (Nd:YAG-) pulsed laser, a 3-in. (7.62 cm) diameter mirror lens and a compact spectrograph with a miniature intensified charge coupled device (mini-ICCD), we were able to detect water (H2O), water ice (H2O-ice), CO2-ice, hydrous minerals, organics, nitrates, and an amino acid from a remote distance of 122 m in natural lighting conditions. To the best of our knowledge, this is the longest remote Raman detection using a compact system. The development of this uniquely compact portable remote Raman system is applicable to a range of solar system exploration missions including stationary landers for ocean worlds and lunar exploration, as they provide unambiguous detection of compounds indicative of life as well as resources necessary for further human exploration.

9.
SciMed J ; 2(1): 1-7, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34085057

RESUMEN

Raman-enhanced spectroscopy (RESpect) probe, which enhances Raman spectroscopy technology through a portable fiber-optic device, characterizes tissues and cells by identifying molecular chemical composition showing distinct differences/similarities for potential tumor markers or diagnosis. In a feasibility study with the ultimate objective to translate the technology to the clinic, a panel of pediatric non-Hodgkin lymphoma tissues and non-malignant specimens had RS analyses compared between standard Raman spectroscopy microscope instrument and RESpect probe. Cryopreserved tissues were mounted on front-coated aluminum mirror slides and analyzed by standard Raman spectroscopy and RESpect probe. Principal Component Analysis revealed similarities between non-Hodgkin lymphoma subtypes but not follicular hyperplasia. Standard Raman spectroscopy and RESpect probe fingerprint comparisons demonstrated comparable primary peaks. Raman spectroscopic fingerprints and peaks of pediatric non-Hodgkin lymphoma subtypes and follicular hyperplasia provided novel avenues to pursue diagnostic approaches and identify potential new therapeutic targets. The information could inform new insights into molecular cellular pathogenesis. Translating Raman spectroscopy technology by using the RESpect probe as a potential point-of-care screening instrument has the potential to change the paradigm of screening for cancer as an initial step to determine when a definitive tissue biopsy would be necessary.

10.
Appl Spectrosc ; 74(2): 233-240, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31517522

RESUMEN

The detection and identification of materials from a distance is highly desirable for applications where accessibility is limited or there are safety concerns. Raman spectroscopy can be performed remotely and provides a very high level of confidence in detection of chemicals through vibrational modes. However, the remote Raman detection of chemicals is challenging because of the very weak nature of Raman signals. Using a remote Raman system, we performed fast remote detection of various solid and liquid chemicals from 1752 m during afternoon hours on a sunny day in Hawaii. Remote Raman systems with kilometer target range could be useful for chemical detection of volcanic gases, methane clathrate icebergs or fire ice, toxic gas clouds and toxic waste, explosives, and hazardous chemicals. With this successful test, we demonstrate the feasibility of developing future mid-size remote Raman systems suitable for long range chemical detection using helicopters and light airplanes.

11.
Appl Opt ; 58(32): 8971-8980, 2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31873679

RESUMEN

We report the remote Raman spectra of natural igneous, metamorphic, and sedimentary rock samples at a standoff distance of 5 m. High-quality remote Raman spectra of unprepared rocks are necessary for accurate and realistic analysis of future Raman measurements on planetary surfaces such as Mars. Our results display the ability of a portable compact remote Raman system (CRRS) to effectively detect and isolate various light- and dark-colored mineral phases in natural rocks. The CRRS easily detected plagioclase and potassium feldspar end members, quartz, and calcite in rocks with high fluorescence backgrounds. Intermediate feldspars and quartz, when found in rocks with complex mineralogies, exhibited band shifts and broadening in the ${504{-}510}\,\,{{\rm cm}^{ - 1}}$504-510cm-1 and ${600{-}1200}\,\,{{\rm cm}^{ - 1}}$600-1200cm-1 regions. A good approximation of intermediate plagioclase feldspars was possible by using overall Raman spectral shape and assigning other minor Raman peaks in addition to the $ 504{-}510\,\,{{\rm cm}^{ - 1}}$504-510cm-1 peaks. Detection of olivine and pyroxene in mafic rocks allowed for compositional characterization.

12.
AIDS Res Hum Retroviruses ; 35(3): 287-294, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30612435

RESUMEN

HIV-positive individuals are at increased risk for precancerous anal squamous intraepithelial lesions (SILs). Anal cytology and digital rectal examination are performed as screening tools, but extensive training and appropriate instruments are required to follow up on an abnormal anal cytology. Thus, novel approaches to SIL evaluation could improve better health care follow-up by efficient and timely diagnosis to offer treatment options. Recently, Raman-enhanced spectroscopy (RESpect) has emerged as a potential new tool for early identification of SIL. RESpect is a noninvasive, label-free, laser-based technique that identifies molecular composition of tissues and cells. HIV-serodiscordant couples had anal biopsies obtained during high-resolution anoscopy. RESpect was performed on the specimens. Principal component analysis of the data identified differences between normal and abnormal tissue as well as HIV-positive and HIV-negative individuals of each couple even with similar pathologies. RESpect has the potential to change the paradigm of anal pathology diagnosis and could provide insight into different pathways leading to SIL in HIV-serodiscordant couples.


Asunto(s)
Canal Anal/diagnóstico por imagen , Detección Precoz del Cáncer/métodos , Composición Familiar , Seropositividad para VIH/patología , Tamizaje Masivo/métodos , Lesiones Precancerosas/diagnóstico por imagen , Minorías Sexuales y de Género , Espectrometría Raman/métodos , Lesiones Intraepiteliales Escamosas/diagnóstico por imagen , Adulto , Canal Anal/patología , Neoplasias del Ano/diagnóstico , Neoplasias del Ano/epidemiología , Biopsia , Femenino , VIH-1/inmunología , Humanos , Incidencia , Masculino , Persona de Mediana Edad
13.
Appl Spectrosc ; 73(3): 320-328, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30347998

RESUMEN

The remote detection of chemicals using remote Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) is highly desirable for homeland security and NASA planetary exploration programs. We recently demonstrated Raman spectra with high signal-to-noise ratio of various materials from a 430 m distance during daylight with detection times of 1-10 s, utilizing a 203 mm diameter telescopic remote Raman system and 100 mJ/pulse laser energy at 532 nm for excitation. In this research effort, we describe a simple two-components approach that helps to obtain remote Raman and LIBS spectra of targets at distance of 246 m with 3 mJ/pulse in daytime. The two components of the method are: (1) a small spectroscopy system utilizing 76 mm diameter collection optics; and (2) a small remote lens near the target. Remote Raman spectra of various chemicals are presented here with detection time of 1 s. Remote LIBS spectra of minerals using single laser pulse of 3 mJ/pulse energy from a distance of 246 m are also presented. This research work demonstrates a simple approach that significantly improves remote Raman and LIBS capabilities for long range chemical detection with compact low laser power Raman and LIBS systems.

14.
Appl Opt ; 57(1): 62-68, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29328119

RESUMEN

We report the development of an innovative standoff ultracompact micro-Raman instrument that would solve some of the limitations of traditional micro-Raman systems to provide a superior instrument for future NASA missions. This active remote sensor system, based on a 532 nm laser and a miniature spectrometer, is capable of inspection and identification of minerals, organics, and biogenic materials within several centimeters (2-20 cm) at a high 10 µm resolution. The sensor system is based on inelastic (Raman) light scattering and laser-induced fluorescence. We report on micro-Raman spectroscopy development and demonstration of the standoff Raman measurements by acquiring Raman spectra in daylight at a 10 cm target distance with a small line-shaped laser spot size of 17.3 µm (width) by 5 mm (height).

15.
Appl Spectrosc ; 71(5): 1025-1038, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27645726

RESUMEN

We determined Raman cross-sections of various organic liquids and inorganic polyatomic ions in aqueous solutions with a 532 nm pulsed laser using remote Raman systems developed at the University of Hawaii. Using a calibrated integrating sphere as a light source, we converted the intensity counts in the spectrum of the light from the integrating sphere measured with UH remote Raman instrument to spectral radiance. From these data, a response function of the remote Raman instrument was obtained. With the intensity-calibrated instrument, we collected remote Raman data from a standard 1 mm path length fused silica spectrophotometer cell filled with cyclohexane. The measured value of the differential Raman cross-section for the 801 cm-1 vibrational mode of cyclohexane is 4.55 × 10-30 cm2 sr-1 molecule-1 when excited by a 532 nm laser, in good agreement with the values reported in the literature. Using the measured cyclohexane Raman cross-section as a reference and relative Raman mode intensities of the various ions and organic liquids, we calculated the Raman cross-sections of the strongest Raman lines of nitrate, sulfate, carbonate, phosphate ions, and organic liquids by maintaining same experimental conditions for remote Raman detection. These relative Raman cross-section values will be useful for estimating detection capabilities of remote Raman systems for planetary exploration.

16.
Astrobiology ; 16(9): 715-29, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27623200

RESUMEN

UNLABELLED: We developed a prototype instrument called the Standoff Biofinder, which can quickly locate biological material in a 500 cm(2) area from a 2 m standoff distance with a detection time of 0.1 s. All biogenic materials give strong fluorescence signals when excited with UV and visible lasers. In addition, the luminescence decay time of biogenic compounds is much shorter (<100 ns) than the micro- to millisecond decay time of transition metal ions and rare-earth ions in minerals and rocks. The Standoff Biofinder takes advantage of the short lifetime of biofluorescent materials to obtain real-time fluorescence images that show the locations of biological materials among luminescent minerals in a geological context. The Standoff Biofinder instrument will be useful for locating biological material during future NASA rover, lander, and crewed missions. Additionally, the instrument can be used for nondestructive detection of biological materials in unique samples, such as those obtained by sample return missions from the outer planets and asteroids. The Standoff Biofinder also has the capacity to detect microbes and bacteria on space instruments for planetary protection purposes. KEY WORDS: Standoff Biofinder-Luminescence-Time-resolved fluorescence-Biofluorescence-Planetary exploration-Planetary protection-Noncontact nondestructive biodetection. Astrobiology 16, 715-729.


Asunto(s)
Exobiología/instrumentación , Exobiología/métodos , Medio Ambiente Extraterrestre , Planetas , Regiones Antárticas , Bacterias , Contaminación de Equipos , Fluorescencia , Fósiles , Rayos Láser , Espectrometría Raman , Factores de Tiempo
17.
Appl Opt ; 55(36): 10283-10289, 2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-28059247

RESUMEN

Raman spectroscopy is a characterization technique that is able to analyze and detect water or water-bearing minerals, minerals, and organic materials that are of special interest for planetary science. Using a portable pulsed remote Raman system with a commercial 8 in. (203.2 mm) telescope, a frequency doubled Nd-YAG-pulsed laser, and a spectrometer equipped with an intensified CCD camera, we acquired good quality Raman spectra of various materials from a 430 m standoff distance during daylight with detection times of 1-10 s, in a realistic context in which both the exciting source and the detector are part of the same measurement system. Remote Raman spectra at this distance provided unambiguous detection of compounds such as water and water ice, dry ice, sulfur, sulfates, various minerals and organics, and atmospheric gases. This research work demonstrates significant improvement in the remote Raman technique as well as its suitability for solar system exploration.

18.
Appl Opt ; 54(25): 7598-611, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26368883

RESUMEN

A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters.

19.
Appl Spectrosc ; 69(2): 173-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25587811

RESUMEN

In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy. We have developed a prototype remote LIBS-Raman-fluorescence instrument, Q-switched laser-induced time-resolved spectroscopy (QuaLITy), which is approximately 70 000 times more efficient at recording signals than a commercially available LIBS instrument. The increase in detection limits and sensitivity is due to our development of a directly coupled system, the use of an intensified charge-coupled device image detector, and a pulsed laser that allows for time-resolved measurements. We compare the LIBS capabilities of our system with an Ocean Optics spectrometer instrument at 7 m and 5 m distance. An increase in signal-to-noise ratio of at least an order of magnitude allows for greater quantitative analysis of the elements in a LIBS spectrum with 200-300 µm spatial resolution at 7 m, a Raman instrument capable of 1 mm spatial resolution at 3 m, and bioorganic fluorescence detection at longer distances. Thus, the new QuaLITy instrument fulfills all of the NASA expectations for proposed instruments.

20.
Appl Spectrosc ; 68(9): 925-36, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25226246

RESUMEN

An integrated Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) instrument is a valuable geoanalytical tool for future planetary missions to Mars, Venus, and elsewhere. The ChemCam instrument operating on the Mars Curiosity rover includes a remote LIBS instrument. An integrated Raman-LIBS spectrometer (RLS) based on the ChemCam architecture could be used as a reconnaissance tool for other contact instruments as well as a primary science instrument capable of quantitative mineralogical and geochemical analyses. Replacing one of the ChemCam spectrometers with a miniature transmission spectrometer enables a Raman spectroscopy mineralogical analysis to be performed, complementing the LIBS chemical analysis while retaining an overall architecture resembling ChemCam. A prototype transmission spectrometer was used to record Raman spectra under both Martian and Venus conditions. Two different high-pressure and high-temperature cells were used to collect the Raman and LIBS spectra to simulate surface conditions on Venus. The resulting LIBS spectra were used to generate a limited partial least squares Venus calibration model for the major elements. These experiments demonstrate the utility and feasibility of a combined RLS instrument.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA