RESUMEN
D-Alanine, a rare enantiomer of alanine, can potentially alleviate the worsening of viral infections and maintain circadian rhythm. This study aimed to analyze the kinetics of D-Alanine upon oral intake. Five healthy volunteers were administered D-Alanine as a single oral dose at 11,236 or 33,708 µmoL (1-3 g). Upon intake of the lower dose, the plasma level of D-Alanine reached its peak concentration of 588.4 ± 40.9 µM with a peak time of 0.60 ± 0.06 h. The compartment model estimated the clearance of D-Alanine at 12.5 ± 0.3 L/h, or 208 ± 5 mL/min, distribution volume of 8.3 ± 0.7 L and half-life of 0.46 ± 0.04 h, suggesting a rapid clearance of D-Alanine. The peak concentration and area under the curve increased proportionally upon intake of the higher dose, while the clearance, distribution volume and half-life did not. The urinary ratio of D-Alanine per sum of D- and L-Alanine reached its peak of nearly 100%, followed by a slow decline. The peak time of the urinary ratio was 1.15 ± 0.15 h, showing a time lag of blood to urine excretion. Fractional excretion, a ratio of the clearance of a substance per a standard molecule in kidney, of D-Alanine increased from 14.0 ± 5.8% to 64.5 ± 10.3%; the latter corresponded to the urinary clearance of D-Alanine as about 77 mL/min for an adult, with a peak time of 1.90 ± 0.56 h. D-Alanine was quickly absorbed and appeared in blood, followed by urinary excretion. This kinetic analysis increases our fundamental knowledge of the oral intake of D-Alanine for the chronic dosing. Trial number: #UMIN000050865. Date of registration: 2023/6/30.
Asunto(s)
Alanina , Humanos , Alanina/sangre , Alanina/farmacocinética , Administración Oral , Masculino , Adulto , Cinética , Semivida , Femenino , Voluntarios Sanos , Estereoisomerismo , Adulto JovenRESUMEN
The sensitivity of currently available screening tools for urothelial carcinoma (UC) remains unsatisfactory particularly at early stages. Hence, we aimed to establish a novel blood-based screening tool for urothelial carcinoma. We measured serum d-amino acid levels in 108 and 192 patients with and without UC individuals in the derivation cohort, and 15 and 25 patients with and without UC in the validation cohort. Serum d-asparagine levels were significantly higher in patients with UC than in those without UC (p < 0.0001). We developed a novel screening equation for the diagnosis of urothelial carcinoma using d-asparagine in serum and estimated the glomerular filtration rate (eGFR). Serum d-asparagine levels adjusted for eGFR exhibited high performance in the diagnosis of UC (AUC-ROC, 0.869; sensitivity, 80.6 %; specificity, 82.7 %), even in early-stage UC (AUC-ROC: 0.859, sensitivity: 83.3 %, specificity: 82.3 %), which were previously misdiagnosed via urinary occult blood or urine cytology. This established strategy combined with urinary occult blood, improves diagnostic ability (sensitivity: 93.7 %, specificity: 70.1 %).
Asunto(s)
Asparagina , Tasa de Filtración Glomerular , Humanos , Masculino , Femenino , Asparagina/sangre , Persona de Mediana Edad , Anciano , Detección Precoz del Cáncer/métodos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/orina , Sensibilidad y Especificidad , Neoplasias Urológicas/sangre , Neoplasias Urológicas/diagnóstico , Neoplasias de la Vejiga Urinaria/sangre , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/orina , Urotelio/patología , Urotelio/metabolismo , Carcinoma de Células Transicionales/sangre , Carcinoma de Células Transicionales/diagnóstico , Carcinoma de Células Transicionales/orinaRESUMEN
Gliomas, particularly glioblastomas (GBMs), pose significant challenges due to their aggressiveness and poor prognosis. Early detection through biomarkers is critical for improving outcomes. This study aimed to identify novel biomarkers for gliomas, particularly GBMs, using chiral amino acid profiling. We used chiral amino acid analysis to measure amino acid L- and D-isomer levels in resected tissues (tumor and non-tumor), blood, and urine from 33 patients with primary gliomas and 24 healthy volunteers. The levels of D-amino acid oxidase (DAO), a D-amino acid-degrading enzyme, were evaluated to investigate the D-amino acid metabolism in brain tissue. The GBM mouse model was created by transplanting GBM cells into the brain to confirm whether gliomas affect blood and urine chiral amino acid profiles. We also assessed whether D-amino acids produced by GBM cells are involved in cell proliferation. D-asparagine (D-Asn) levels were higher and DAO expression was lower in glioma than in non-glioma tissues. Blood and urinary D-Asn levels were lower in patients with GBM than in healthy volunteers (p < 0.001), increasing after GBM removal (p < 0.05). Urinary D-Asn levels differentiated between healthy volunteers and patients with GBM (area under the curve: 0.93, sensitivity: 0.88, specificity: 0.92). GBM mouse model validated the decrease of urinary D-Asn in GBM. GBM cells used D-Asn for cell proliferation. Gliomas induce alterations in chiral amino acid profiles, affecting blood and urine levels. Urinary D-Asn emerges as a promising diagnostic biomarker for gliomas, reflecting tumor presence and severity.
Asunto(s)
Asparagina , Neoplasias Encefálicas , D-Aminoácido Oxidasa , Glioblastoma , Humanos , Glioblastoma/metabolismo , Glioblastoma/orina , Glioblastoma/patología , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/orina , Neoplasias Encefálicas/patología , Masculino , Persona de Mediana Edad , Femenino , Asparagina/orina , Asparagina/metabolismo , Adulto , D-Aminoácido Oxidasa/metabolismo , D-Aminoácido Oxidasa/genética , Ratones , Anciano , Biomarcadores de Tumor/orina , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Proliferación CelularRESUMEN
Background: d-alanine administration prevented kidney damage in a murine acute kidney injury model. Further data are needed on the influence of d-alanine on kidney function in humans. Objective: This study investigated the effects of d-alanine intake on amino acid metabolism and kidney function in healthy volunteers. Methods: This multicenter pilot study randomly assigned individuals from the general Japanese population to receive 3 g or 6 g of d-alanine intake per day for 7 d in a 1:1 ratio. The primary endpoint was the mean change in plasma and urine d-alanine levels from baseline to 7 d after intake. The secondary endpoints were mean changes in kidney function and other clinical factors. Safety was assessed by evaluating adverse events and clinical parameters. Results: We randomly assigned 24 participants to the 3-g (n = 12) and 6-g d-alanine (n = 12) groups. The mean baseline estimated glomerular filtration rate (eGFR) was 73 mL/min/1.73 m2. The mean plasma d-alanine concentration increased from baseline by 77.5 ± 34.3 and 192.1 ± 80.9 nmol/mL in the 3-g and 6-g d-alanine groups (both p < 0.0001), respectively, in a dose-dependent manner (between-group difference: 114.6 nmol/mL; 95% CI: 62.1-167.2; P = 0.0002). A similar increase was observed for the urine d-alanine to creatinine ratio. The mean eGFR was elevated by 5.7 ± 8.8 mL/min/1.73 m2 in the 6-g d-alanine group (P = 0.045) but did not significantly change in the 3-g d-alanine group. Nonserious adverse events were reported in 11 participants. Conclusions: d-alanine intake increased plasma and urine d-alanine levels and was well tolerated in participants with normal kidney function. These results will be useful in future trials investigating the effects of d-alanine intake on kidney disease progression in patients with chronic kidney disease.This trial was registered at the UMIN Clinical Trials Registry as UMIN000051466.
RESUMEN
Biomarkers that accurately reflect renal function are essential in management of chronic kidney diseases (CKD). However, in children, age/physique and medication often alter established renal biomarkers. We studied whether amino acid enantiomers in body fluids correlate with renal function and whether they are influenced by physique or steroid medication during development. We conducted a prospective study of children 2 to 18 years old with and without CKD. We analyzed associations of serine/asparagine enantiomers in body fluids with major biochemical parameters as well as physique. To study consequences of kidney dysfunction and steroids on serine/asparagine enantiomers, we generated juvenile mice with uninephrectomy, ischemic reperfusion injury, or dexamethasone treatment. We obtained samples from 27 children, of which 12 had CKD due to congenital (n = 7) and perinatal (n = 5) causes. Plasma D-asparagine and the D/L-serine ratio had robust, positive linear associations with serum creatinine and cystatin C, and detected CKD with high sensitivity and specificity, uninfluenced by body size or biochemical parameters. In the animal study, kidney dysfunction increased plasma D-asparagine and the D/L-serine ratio, but dexamethasone treatment did not. Thus, plasma D-asparagine and the D/L-serine ratio can be useful markers for renal function in children.
Asunto(s)
Asparagina , Biomarcadores , Insuficiencia Renal Crónica , Serina , Niño , Animales , Humanos , Asparagina/sangre , Asparagina/metabolismo , Insuficiencia Renal Crónica/sangre , Preescolar , Serina/sangre , Ratones , Masculino , Femenino , Adolescente , Biomarcadores/sangre , Estudios Prospectivos , Dexametasona , Estereoisomerismo , Creatinina/sangre , Riñón/metabolismoRESUMEN
Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.
Asunto(s)
Sistema de Transporte de Aminoácidos ASC , Transportadores de Ácidos Monocarboxílicos , Serina , Serina/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Humanos , Riñón/metabolismo , Ratones , Sodio/metabolismo , Transporte Biológico , MasculinoRESUMEN
A two-dimensional LC-MS/MS system has been developed for the enantioselective determination of proline (Pro), cis-4-hydroxyproline (cis-4-Hyp) and trans-4-hydroxyproline (trans-4-Hyp) in a variety of biological samples. The amino acids were pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), and the NBD-derivatives were separated by a reversed-phase column (Singularity RP18) as their D plus L mixtures in the first dimension. The collected target fractions were then introduced into the second dimension where the enantiomers were separated by a Pirkle-type enantioselective column (Singularity CSP-001S) and determined by a tandem mass spectrometer (Triple Quad™ 5500). The method was validated by the standard amino acids and also by human plasma, and sufficient results were obtained for the calibration, precision and accuracy. The method was applied to human plasma and urine, bivalve tissues and fermented food/beverages. D-Pro was widely found in the human physiological fluids, bivalves and several fermented products. Although trans-4-D-Hyp was not found in all the tested samples, cis-4-D-Hyp was present in human urine and tissues of the ark shell, and further studies focusing on the origin and physiological significance of these D-enantiomers are expected.
RESUMEN
For the discovery of sensitive biomarkers of kidney function focusing on chiral amino acids, a multiple heart-cutting two-dimensional (2D) liquid chromatography-mass spectrometry (LC-MS)/MS system has been designed/developed. As the target analytes, alanine (Ala), aspartic acid, glutamic acid (Glu), leucine (Leu), lysine, methionine, phenylalanine (Phe), proline (Pro), serine (Ser), and valine were selected considering the presence of their d-forms in mammals. The 2D LC-MS/MS system consisted of the nonenantioselective reversed-phase separation of the target amino acids, the separations of the d- and l-enantiomers, and detection using MS/MS. Using the method, the plasma chiral amino acids, precolumn derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole, were isolated from other intrinsic substances, then determined without losing sensitivity by the fully automated whole-peak volume transfer operation from first to second dimension. In all of the tested plasma samples obtained from five healthy individuals and 15 patients with chronic kidney disease (CKD), the target chiral amino acids were determined without interference. In healthy individuals, the levels of all the tested d-amino acids were regulated in the low ranges. In contrast, the % d values of Glu, Leu, and Phe significantly increased with the progress of kidney dysfunction, besides the previously reported values of d-Ala, Pro, and Ser. Concerning Phe, the significant increase of the % d values (p < 0.05) was reported for the first time even in the mild CKD group compared to those of the healthy group; d-Phe might be a more sensitive marker than the previously reported d-forms. These results demonstrated the potential of these d-forms as the sensitive biomarkers of kidney function for the early diagnosis of CKD.
Asunto(s)
Aminoácidos , Insuficiencia Renal Crónica , Animales , Humanos , Aminoácidos/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Alanina/análisis , Serina , Ácido Glutámico , Leucina , Prolina , Fenilalanina , Insuficiencia Renal Crónica/diagnóstico , Diagnóstico Precoz , Biomarcadores , Estereoisomerismo , MamíferosRESUMEN
A highly-selective three-dimensional high-performance liquid chromatographic (3D-HPLC) system was developed for the determination of serine (Ser), threonine (Thr) and allo-threonine (aThr) enantiomers in human plasma to screen the new biomarker of chronic kidney disease (CKD). d-Ser has been reported to be the candidate biomarker of CKD, however, multiple biomarkers are still required. Therefore, Ser analogs of hydroxy amino acids are the focus in the present study. For the sensitive analysis, the amino acids were derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole and detected by their fluorescence. The 3D-HPLC system consisted of a reversed-phase column (Singularity RP18, 1.0 × 250 mm), an anion-exchange column (Singularity AX, 1.0 × 150 mm) and a Pirkle-type chiral stationary phase (Singularity CSP-013S, 1.5 × 250 mm). The developed method was validated and applied to the human plasma samples obtained from 15 healthy volunteers and 165 CKD patients. The concentrations of the d-forms were 1.13-2.26 (Ser), 0.01-0.03 (Thr) and 0.04-0.10 µM (aThr) for the healthy volunteers and 0.95-19.0 (Ser), 0-0.57 (Thr) and 0.04-1.02 µM (aThr) for the CKD patients. The concentrations and the %d values of all the target d-amino acids were increased along with the decreasing of renal function and further investigation for clinical applications are expected.
Asunto(s)
Antraciclinas , Insuficiencia Renal Crónica , Treonina , Humanos , Serina , Cromatografía Líquida de Alta Presión/métodos , Aminoácidos/química , Estereoisomerismo , BiomarcadoresRESUMEN
BACKGROUND & AIMS: D-amino acids, the chiral counterparts of protein L-amino acids, were primarily produced and utilized by microbes, including those in the human gut. However, little was known about how orally administered or microbe-derived D-amino acids affected the gut microbial community or gut disease progression. METHODS: The ratio of D- to L-amino acids was analyzed in feces and blood from patients with ulcerative colitis (UC) and healthy controls. Also, composition of microbe was analyzed from patients with UC. Mice were treated with D-amino acid in dextran sulfate sodium colitis model and liver cholangitis model. RESULTS: The ratio of D- to L-amino acids was lower in the feces of patients with UC than that of healthy controls. Supplementation of D-amino acids ameliorated UC-related experimental colitis and liver cholangitis by inhibiting growth of Proteobacteria. Addition of D-alanine, a major building block for bacterial cell wall formation, to culture medium inhibited expression of the ftsZ gene required for cell fission in the Proteobacteria Escherichia coli and Klebsiella pneumoniae, thereby inhibiting growth. Overexpression of ftsZ restored growth of E. coli even when D-alanine was present. We found that D-alanine not only inhibited invasion of pathological K. pneumoniae into the host via pore formation in intestinal epithelial cells but also inhibited growth of E. coli and generation of antibiotic-resistant strains. CONCLUSIONS: D-amino acids might have potential for use in novel therapeutic approaches targeting Proteobacteria-associated dysbiosis and antibiotic-resistant bacterial diseases by means of their effects on the intestinal microbiota community.
Asunto(s)
Colangitis , Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Aminoácidos , Proteobacteria , Escherichia coli , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Alanina , Colangitis/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéuticoRESUMEN
PURPOSE: Several D-amino acids have been shown to be protective against kidney injury in mice. Risperidone, a currently used atypical antipsychotic agent for schizophrenia, is also known to inhibit the activity of D-amino acid oxidase, which degrades certain D-amino acids. Based on the hypothesis that risperidone would prevent kidney disease progression, this study investigated the association between risperidone use and kidney function decline in patients with schizophrenia. METHODS: This retrospective cohort study included patients who were diagnosed with schizophrenia and had data available from two or more serum creatinine measurements between April 1, 2010, and March 31, 2020. Patients who used risperidone for at least 30 days were included in the risperidone group, whereas those who had no record of risperidone use were included in the control group. Cox regression models were used to evaluate the risk for 40% decline in estimated glomerular filtration rate (eGFR) in patients treated with risperidone compared to that in the control group. FINDINGS: Overall, 212 patients used risperidone and 1468 patients had no record of risperidone use. The mean age was 55 years, 759 (45%) of the patients were male, and the mean eGFR at baseline was 88 mL/min/1.73 m2. The mean age in the risperidone group was less than that in the control group (52 vs 56 years); other baseline characteristics were comparable between the two groups. During a mean follow-up of 1.6 years, 267 patients (16%) had a 40% eGFR decline. The incidence rate of 40% eGFR decline was lower in the risperidone group than in the control group (60 vs 104 per 1000 person-years). After adjustment for baseline age, sex, and eGFR, risperidone use was associated with a decreased risk for 40% eGFR decline (hazard ratio = 0.54; 95% CI, 0.33-0.87; P = 0.01). IMPLICATIONS: Risperidone use may be associated with decreased risk for kidney function decline in patients with schizophrenia. Further studies are warranted to validate these findings.
Asunto(s)
Antipsicóticos , Insuficiencia Renal Crónica , Esquizofrenia , Humanos , Masculino , Animales , Ratones , Persona de Mediana Edad , Femenino , Esquizofrenia/tratamiento farmacológico , Risperidona/efectos adversos , Estudios Retrospectivos , Antipsicóticos/efectos adversos , Riñón , Tasa de Filtración GlomerularRESUMEN
Mammals exhibit systemic homochirality of amino acids in L-configurations. While ribosomal protein synthesis requires rigorous chiral selection for L-amino acids, both endogenous and microbial enzymes convert diverse L-amino acids to D-configurations in mammals. However, it is not clear how mammals manage such diverse D-enantiomers. Here, we show that mammals sustain systemic stereo dominance of L-amino acids through both enzymatic degradation and excretion of D-amino acids. Multidimensional high performance liquidchromatography analyses revealed that in blood, humans and mice maintain D-amino acids at less than several percent of the corresponding L-enantiomers, while D-amino acids comprise ten to fifty percent of the L-enantiomers in urine and feces. Germ-free experiments showed that vast majority of D-amino acids, except for D-serine, detected in mice are of microbial origin. Experiments involving mice that lack enzymatic activity to catabolize D-amino acids showed that catabolism is central to the elimination of diverse microbial D-amino acids, whereas excretion into urine is of minor importance under physiological conditions. Such active regulation of amino acid homochirality depends on maternal catabolism during the prenatal period, which switches developmentally to juvenile catabolism along with the growth of symbiotic microbes after birth. Thus, microbial symbiosis largely disturbs homochirality of amino acids in mice, whereas active host catabolism of microbial D-amino acids maintains systemic predominance of L-amino acids. Our findings provide fundamental insight into how the chiral balance of amino acids is governed in mammals and further expand the understanding of interdomain molecular homeostasis in host-microbial symbiosis.
Asunto(s)
Aminoácidos , Simbiosis , Humanos , Animales , Ratones , Aminoácidos/química , Serina , Biosíntesis de Proteínas , Estereoisomerismo , MamíferosRESUMEN
Introduction: The number of patients with chronic kidney disease (CKD) is increasing worldwide. Cognitive impairment is one of the comorbidities of CKD. With the increased number of aged population, novel biomarkers of impaired cognitive function are required. Intra-body profile of amino acid (AA) is reportedly altered in patients with CKD. Although some AAs act as neurotransmitters in the brain, it is not clear whether altered AA profile are associated with cognitive function in patients with CKD. Therefore, intra-brain and plasma levels of AAs are evaluated with respect to cognitive function in patients with CKD. Methods: Plasma levels of AAs were compared between 14 patients with CKD, including 8 patients with diabetic kidney disease, and 12 healthy controls to identify the alteration of specific AAs in CKD. Then, these AAs were evaluated in the brains of 42 patients with brain tumor using non-tumor lesion of the resected brain. Cognitive function is analyzed with respect to intra-brain levels of AAs and kidney function. Moreover, plasma AAs were analyzed in 32 hemodialyzed patients with/without dementia. Results: In patients with CKD, plasma levels of asparagine (Asn), serine (Ser), alanine (Ala), and proline (Pro) were increased as compared to patients without CKD. Among these AAs, L-Ser, L-Ala, and D-Ser show higher levels than the other AAs in the brain. Intra-brain levels of L-Ser was correlated with cognitive function and kidney function. The number of D-amino acid oxidase or serine racemase-positive cells was not correlated with kidney function. Moreover, the plasma levels of L-Ser are also decreased in patients with declined cognitive function who are treated with chronic hemodialysis. Conclusion: The decreased levels of L-Ser are associated with impaired cognitive function in CKD patients. Especially, plasma L-Ser levels may have a potential for novel biomarker of impaired cognitive function in patients with hemodialysis.
RESUMEN
Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to respiratory failure, animals that lack a d-serine synthetic enzyme, serine racemase (SR), show grossly normal growth. However, SR-independent origins of d-serine in the brain remain unclarified. In the present study, we investigated the origin of brain d-serine in mice. Loss of SR significantly reduced d-serine in the cerebral cortex, but a portion of d-serine remained in both neonates and adults. Although d-serine was also produced by intestinal bacteria, germ-free experiments did not influence d-serine levels in the cerebral cortex. In addition, treatment of SR-knockout mice with antibiotics showed a significant reduction of intestinal d-serine, but no reduction in the brain. On the other hand, restriction of dietary intake reduced systemic circulation of d-serine and resulted in a slight decrease of d-serine in the cerebral cortex, but did not account for brain d-serine found in the SR-knockout mice. Therefore, our findings show that endogenous d-serine of non-SR origin exists in the brain. Such previously unrecognized, SR-independent, endogenous d-serine may contribute baseline activity of NMDARs, especially in developing brain, which has minimal SR expression.
Asunto(s)
Receptores de N-Metil-D-Aspartato , Serina , Ratones , Animales , Serina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Encéfalo/metabolismo , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Ratones Noqueados , Mamíferos/metabolismoRESUMEN
The number of patients on hemodialysis is increasing globally; diabetes mellitus (DM) complications is the major cause of hemodialysis in patients with chronic kidney disease (CKD). The D-amino acid (AA) profile is altered in patients with CKD; however, it has not been studied in patients with CKD and DM. Furthermore, bacteria responsible for altering the D-AA profile are not well understood. Therefore, we examined the D-AA profiles and associated bacteria in patients with CKD, with and without DM. We enrolled 12 healthy controls and 54 patients with CKD, with and without DM, and determined their salivary, stool, plasma, and urine chiral AA levels using two-dimensional high-performance liquid chromatography. We performed 16S rRNA gene sequencing analysis of the oral and gut microbiota to determine the association between the abundance of bacterial species and D-AA levels. Plasma D-alanine and D-serine levels were higher in patients with CKD than in healthy adults (p < 0.01), and plasma D-alanine levels were higher in patients with CKD and DM than in those without DM. The abundance of salivary Streptococcus, which produced D-alanine, increased in patients with CKD and DM and was positively correlated with plasma D-alanine levels. Patients with CKD and DM had unique oral microbiota and D-alanine profiles. Plasma D-alanine is a potential biomarker for patients with CKD and DM.
Asunto(s)
Diabetes Mellitus , Insuficiencia Renal Crónica , Adulto , Humanos , ARN Ribosómico 16S/genética , Alanina , Insuficiencia Renal Crónica/complicaciones , Bacterias/genética , Streptococcus/genéticaRESUMEN
D-Tryptophan (D-Trp) is one of the minor D-enantiomers of amino acids discovered in microbes and mollusca. In the present study, a highly-selective 2D chiral LC-MS/MS method has been designed and developed focusing on the determination of Trp enantiomers to investigate the presence and regulation of free D-Trp in mammals. The developed system consisted of a reversed-phase separation for the first dimension, an enantioselective separation for the second dimension and also the detection using a triple quadrupole mass spectrometer for the third/fourth dimensions. Using the present method, urinary D-Trp in mammals, including healthy human volunteers and mice, were successfully determined. Although only l-Trp was observed in a mixed urine sample of healthy volunteers, small amounts of D-Trp were detected in the C57BL/6J mice (n = 5, %D=6.18 ± 0.47). In B6DAO- mice lacking the activity of d-amino acid oxidase (DAO), relatively high levels of D-Trp were observed (n = 6, %d=27.43 ± 3.26). The obtained %d values of Trp in the urine of the C57BL/6J mice and B6DAO- mice were confirmed using various enantioselective columns having different separation properties. These results indicate that the urinary D-Trp level is regulated by DAO in mammals, and further investigations, such as tissue distribution and physiological significance of the intrinsic D-Trp, are expected.
Asunto(s)
Espectrometría de Masas en Tándem , Triptófano , Aminoácidos , Animales , Cromatografía Liquida/métodos , Humanos , Mamíferos , Ratones , Ratones Endogámicos C57BL , Estereoisomerismo , Espectrometría de Masas en Tándem/métodos , Triptófano/químicaRESUMEN
d-Serine modulates excitatory neurotransmission by binding to N-methyl-d-aspartate glutamate receptors. d-Amino acid oxidase (DAO) degrades d-amino acids, such as d-serine, in the central nervous system, and is associated with neurological and psychiatric disorders. However, cell types that express brain DAO remain controversial, and whether brain DAO influences systemic d-amino acids in addition to brain d-serine remains unclear. Here, we created astrocyte-specific DAO-conditional knockout mice. Knockout in glial fibrillary acidic protein-positive cells eliminated DAO expression in the hindbrain and increased d-serine levels significantly in the cerebellum. Brain DAO did not influence levels of d-amino acids in the forebrain or periphery. These results show that astrocytic DAO regulates d-serine specifically in the hindbrain.
Asunto(s)
D-Aminoácido Oxidasa , Serina , Animales , Ratones , Serina/metabolismo , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/metabolismo , Astrocitos/metabolismo , Ratones Noqueados , Aminoácidos , Cerebelo/metabolismoRESUMEN
Bacterial flora has clinical significance for the host. The metabolic environment created by this flora influences immunotherapy in urothelial carcinoma. However, there are no reports on the clinical significance of bacterial flora in the host bloodstream. We aimed to clarify the correlation between extracellular vesicle (EV)-derived blood microflora information and tumor immunological status in urothelial carcinoma (UC) patients. Serum samples were collected from 20 healthy donors, 50 patients with localized UC, and 31 patients with metastatic UC (mUC) who had undergone pembrolizumab treatment. Bacterial DNA in EVs was extracted from each sample. Metagenomic sequencing was performed after amplification of the V1-V2 region of the bacterial 16S rRNA gene. Using the matched tumor tissue and serum samples, we revealed that the smaller amount of peripheral EVs carrying Firmicutes DNA was significantly correlated with the higher number of infiltrating T cells within tumor tissues (CD3; p = 0.015, CD4; p = 0.039, CD8; p = 0.0084) and the higher expression of activation markers on their surface (ICOS on both CD4; p = 0.0013 and CD8 T cells; p = 0.016 and 4-1BB on CD4 T cells; p = 0.016). In terms of circulating metabolic information, L-Ser and L-Pro levels, which play important roles in T cell expansion and proliferation, were significantly higher in the Firmicutes-low group (p = 0.010). All of the patients with higher Firmicutes abundance had disease progression without any clinical response (p = 0.026) and significantly inferior prognosis for pembrolizumab therapy (p = 0.035). This is the first study on the importance of peripheral bacterial EVs in cancer patients treated with cancer immunotherapy.
Asunto(s)
Carcinoma de Células Transicionales , Vesículas Extracelulares , Neoplasias de la Vejiga Urinaria , Humanos , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Firmicutes , ADN Bacteriano , ARN Ribosómico 16S/genéticaRESUMEN
A highly-selective two-dimensional high-performance liquid chromatographic (2D-HPLC, off-line heart cutting mode) system was developed for the determination of serine (Ser), threonine (Thr) and allo-threonine (aThr) enantiomers in human physiological fluids. Ser, Thr and aThr have a hydroxy group in their side chains, and the development of a simultaneous analytical method with a practically sufficient enantio/chemo-selectivity has been required to clarify their amounts in human physiological fluids. The amino acids in the samples were derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole and were isolated by a reversed-phase column (Singularity RP18, 1.0 x 250 mm) in the first dimension. After the target amino acids were collected, the fractions were manually introduced into an enantioselective column in the second dimension and were detected by their fluorescence. For the second dimension, a Pirkle-type chiral stationary phase (Singularity CSP-013S, 1.5 x 250 mm) was used. The resolution values of the enantiomers obtained by the Singularity CSP-013S column were 7.64 for Ser, 7.58 for Thr and 4.71 for aThr by using the mixture of methanol and acetonitrile containing formic acid as the mobile phases. The developed method was validated and applied to human plasma and urine. In the plasma, the obtained %d values (the percentage of d-form to total amino acid) were 1.7 for Ser, and trace levels of d-aThr and d-Thr were observed. In the urine, the %d values were 48.0 for Ser, 1.6 for Thr and 8.0 for aThr (calculated using d-aThr and l-Thr).