Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Intell Neurosci ; 2022: 3999223, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582408

RESUMEN

It is essential to understand the neural mechanisms underlying human decision-making. Several studies using traditional analysis have attempted to explain the neural mechanisms associated with decision-making based on abstract rewards. However, brain-decoding research that utilizes the multivoxel pattern analysis (MVPA) method, especially research focusing on decision-making, remains limited. In brain analysis, decoding strategies for multivoxels are required for various decision-making evaluation criteria. This is because in daily life, the human decision-making process makes use of many evaluation criteria. In the present study, we investigated the representation of evaluation criterion categories in a decision-making process using functional magnetic resonance imaging and MVPA. Participants performed a decision-making task that involved choosing a smartphone by referring to four types of evaluation criteria. The regions of interest (ROIs) were the ventromedial prefrontal cortex (vmPFC), nucleus accumbens (NAcc), and insula. Each combination of the four evaluation criteria was analyzed based on a binary classification using MVPA. From the binary classification accuracy obtained from MVPA, the regions that reflected differences in the evaluation criteria among the ROIs were evaluated. The results of the binary classification in the vmPFC and NAcc indicated that these regions can express evaluation criteria in decision-making processes.


Asunto(s)
Encéfalo , Toma de Decisiones , Humanos , Encéfalo/diagnóstico por imagen , Corteza Prefrontal/patología , Mapeo Encefálico/métodos , Recompensa , Imagen por Resonancia Magnética/métodos
2.
Sensors (Basel) ; 22(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36365987

RESUMEN

Planning and decision-making are critical managerial functions involving the brain's executive functions. However, little is known about the effect of cerebral activity during long-time learning while planning and decision-making. This study investigated the impact of planning and decision-making processes in long-time learning, focusing on a cerebral activity before and after learning. The methodology of this study involves the Tower of Hanoi (ToH) to investigate executive functions related to the learning process. Generally, ToH is used to measure baseline performance, learning rate, offline learning (following overnight retention), and transfer. However, this study performs experiments on long-time learning effects for ToH solving. The participants were involved in learning the task over seven weeks. Learning progress was evaluated based on improvement in performance and correlations with the learning curve. All participants showed a significant improvement in planning and decision-making over seven weeks of time duration. Brain activation results from fMRI showed a statistically significant decrease in the activation degree in the dorsolateral prefrontal cortex, parietal lobe, inferior frontal gyrus, and premotor cortex between before and after learning. Our pilot study showed that updating information and shifting issue rules were found in the frontal lobe. Through monitoring performance, we can describe the effect of long-time learning initiated at the frontal lobe and then convert it to a task execution function by analyzing the frontal lobe maps. This process can be observed by comparing the learning curve and the fMRI maps. It was also clear that the degree of activation tends to decrease with the number of tasks, such as through the mid-phase and the end-phase of training. The elucidation of this structure is closely related to decision-making in human behavior, where brain dynamics differ between "thinking and behavior" during complex thinking in the early stages of training and instantaneous "thinking and behavior" after sufficient training. Since this is related to human learning, elucidating these mechanisms will allow the construction of a brain function map model that can be used universally for all training tasks.


Asunto(s)
Lóbulo Frontal , Solución de Problemas , Humanos , Proyectos Piloto , Lóbulo Frontal/fisiología , Solución de Problemas/fisiología , Encéfalo/diagnóstico por imagen , Aprendizaje
3.
iScience ; 25(10): 105071, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36157577

RESUMEN

The spike collision test is a highly reliable technique to identify the axonal projection of a neuron recorded electrophysiologically for investigating functional spike information among brain areas. It is potentially applicable to more neuronal projections by combining multi-channel recording with optogenetic stimulation. Yet, it remains inefficient and laborious because an experimenter must visually select spikes in every channel and manually repeat spike collision tests for each neuron serially. Here, we automated spike collision tests for all channels in parallel (Multi-Linc analysis) in a multi-channel real-time processing system. The rat cortical neurons identified with this technique displayed physiological spike features consistent with excitatory projection neurons. Their antidromic spikes were similar in shape but slightly larger in amplitude compared with spontaneous spikes. In addition, we demonstrated simultaneous identification of reciprocal or bifurcating projections among cortical areas. Thus, our Multi-Linc analysis will be a powerful approach to elucidate interareal spike communication.

4.
Front Psychol ; 8: 2325, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29403407

RESUMEN

We examined whether auditory feedback assists the post hoc error correction of temporal reproduction, and the perception of self-produced time intervals in the subsecond and suprasecond ranges. Here, we employed a temporal reproduction task with a single motor response at a point in time with and without auditory feedback. This task limits participants to reducing errors by employing auditory feedback in a post hoc manner. Additionally, the participants were asked to judge the self-produced timing in this task. The results showed that, in the presence of auditory feedback, the participants exhibited smaller variability and bias in terms of temporal reproduction and the perception of self-produced time intervals in the subsecond range but not in the suprasecond range. Furthermore, in the presence of auditory feedback, the positive serial dependency of temporal reproduction, which is the tendency of reproduced intervals to be similar to those in adjacent trials, was reduced in the subsecond range but not in the suprasecond range. These results suggest that auditory feedback assists the post hoc error correction of temporal reproduction, and the perception of self-produced time intervals in the subsecond range.

5.
Front Integr Neurosci ; 10: 19, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27313515

RESUMEN

The processing of time intervals is fundamental for sensorimotor and cognitive functions. Perceptual and motor timing are often performed concurrently (e.g., playing a musical instrument). Although previous studies have shown the influence of body movements on time perception, how we perceive self-produced time intervals has remained unclear. Furthermore, it has been suggested that the timing mechanisms are distinct for the sub- and suprasecond ranges. Here, we compared perceptual performances for self-produced and passively presented time intervals in random contexts (i.e., multiple target intervals presented in a session) across the sub- and suprasecond ranges (Experiment 1) and within the sub- (Experiment 2) and suprasecond (Experiment 3) ranges, and in a constant context (i.e., a single target interval presented in a session) in the sub- and suprasecond ranges (Experiment 4). We show that self-produced time intervals were perceived as shorter and more variable across the sub- and suprasecond ranges and within the suprasecond range but not within the subsecond range in a random context. In a constant context, the self-produced time intervals were perceived as more variable in the suprasecond range but not in the subsecond range. The impairing effects indicate that motor timing interferes with perceptual timing. The dependence of impairment on temporal contexts suggests multiple timing mechanisms for the subsecond and suprasecond ranges. In addition, violation of the scalar property (i.e., a constant variability to target interval ratio) was observed between the sub- and suprasecond ranges. The violation was clearer for motor timing than for perceptual timing. This suggests that the multiple timing mechanisms for the sub- and suprasecond ranges overlap more for perception than for motor. Moreover, the central tendency effect (i.e., where shorter base intervals are overestimated and longer base intervals are underestimated) disappeared with motor timing within the subsecond range, suggesting multiple subsecond timing system for perception and motor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...