Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1399562, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872888

RESUMEN

Silicon (Si) uptake is generally beneficial for plants that need protection from insect herbivores. In pursue of mechanisms involved in Si-mediated defense, we comprehensively explored the impact of Si on several defensive and metabolic traits in rice exposed to simulated and real herbivory of Mythimna loreyi Duponchel larvae. Hydroponic experiments showed that Si-deprived rice supplemented with Si 72 h prior to insect infestation were similarly resistant to larvae as plants continuously grown in Si-containing media. Both Si and herbivory altered primary metabolism in rice, including the levels of several sugars, amino acids, and organic acids. While the accumulation of sugars was generally positively correlated with Si presence, multiple amino acids showed a negative correlation trend with Si supplementation. The levels of secondary metabolites, including isopentylamine, p-coumaroylputrescine and feruloylputrescine, were typically higher in the leaves of Si-supplemented plants exposed to herbivory stress compared to Si-deprived plants. In addition, simulated herbivory treatment in Si-supplemented plants induced more volatile emissions relative to Si-deprived plants, which was consistent with the increased transcripts of key genes involved in volatile biosynthesis. In ecological interactions, Si alone did not affect the oviposition choice of M. loreyi but gravid females showed a significant preference for simulated herbivory-treated/Si-deprived compared to Si-supplemented plants. Our data suggest that apart from mechanical defense, Si may affect rice metabolism in multiple ways that might enhance/modulate defense responses of rice under herbivory stress.

2.
J Integr Plant Biol ; 66(2): 252-264, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38018375

RESUMEN

Rice is a staple food for half of the world's population, but it is a poor dietary source of calcium (Ca) due to the low concentration. It is an important issue to boost Ca concentration in this grain to improve Ca deficiency risk, but the mechanisms underlying Ca accumulation are poorly understood. Here, we obtained a rice (Oryza sativa) mutant with high shoot Ca accumulation. The mutant exhibited 26%-53% higher Ca in shoots than did wild-type rice (WT) at different Ca supplies. Ca concentration in the xylem sap was 36% higher in the mutant than in the WT. There was no difference in agronomic traits between the WT and mutant, but the mutant showed 25% higher Ca in the polished grain compared with the WT. Map-based cloning combined with a complementation test revealed that the mutant phenotype was caused by an 18-bp deletion of a gene, OsK5.2, belonging to the Shaker-like K+ channel family. OsK5.2 was highly expressed in the mature region of the roots and its expression in the roots was not affected by Ca levels, but upregulated by low K. Immunostaining showed that OsK5.2 was mainly expressed in the pericycle of the roots. Taken together, our results revealed a novel role for OsK5.2 in Ca translocation in rice, and will be a good target for Ca biofortification in rice.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Calcio/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo
3.
Nat Commun ; 14(1): 6522, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857615

RESUMEN

Silicon (Si) is the most abundant mineral element in the earth's crust. Some plants actively accumulate Si as amorphous silica (phytoliths), which can protect plants from stresses. Here, we report a gene (SIET4) that is required for the proper accumulation and cell-specific deposition of Si in rice and show that it is essential for normal growth. SIET4 is constitutively expressed in leaves and encodes a Si transporter. SlET4 polarly localizes at the distal side of epidermal cells and cells surrounding the bulliform cells (motor cells) of the leaf blade, where Si is deposited. Knockout of SIET4 leads to the death of rice in the presence but not absence of Si. Further analysis shows that SIET4 knockout induces abnormal Si deposition in mesophyll cells and the induction of hundreds of genes related to various stress responses. These results indicate that SIET4 is required for the proper export of Si from leaf cells to the leaf surface and for the healthy growth of rice on land.


Asunto(s)
Oryza , Silicio , Silicio/metabolismo , Oryza/metabolismo , Proteínas de Transporte de Membrana/genética , Dióxido de Silicio , Plantas/metabolismo
4.
Plant Cell ; 35(6): 2232-2250, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36891818

RESUMEN

Silicon (Si) is important for stable and high yields in rice (Oryza sativa), a typical Si hyperaccumulator. The high Si accumulation is achieved by the cooperation of 2 Si transporters, LOW SILICON 1 (OsLsi1) and OsLsi2, which are polarly localized in cells of the root exodermis and endodermis. However, the mechanism underlying their polar localization is unknown. Here, we identified amino acid residues critical for the polar localization of OsLsi1. Deletion of both N- and C-terminal regions resulted in the loss of its polar localization. Furthermore, the deletion of the C-terminus inhibited its trafficking from the endoplasmic reticulum to the plasma membrane. Detailed site-directed mutagenesis analysis showed that Ile18 at the N-terminal region and Ile285 at the C-terminal region were essential for the polar localization of OsLsi1. Moreover, a cluster of positively charged residues at the C-terminal region is also required for polar localization. Phosphorylation and Lys modifications of OsLsi1 are unlikely to be involved in its polar localization. Finally, we showed that the polar localization of OsLsi1 is required for the efficient uptake of Si. Our study not only identified critical residues required for the polar localization of OsLsi1, but also provided experimental evidence for the importance of transporter polarity for efficient nutrient uptake.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Silicio/metabolismo , Silicio/farmacología , Isoleucina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
5.
New Phytol ; 234(4): 1249-1261, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218012

RESUMEN

Grains are the major sink of phosphorus (P) in cereal crops, accounting for 60-85% of total plant P, but the mechanisms underlying P loading into the grains are poorly understood. We functionally characterized a transporter gene required for the distribution of P to the grains in barley (Hordeum vulgare), HvSPDT (SULTR-like phosphorus distribution transporter). HvSPDT encoded a plasma membrane-localized Pi/H+ cotransporter. It was mainly expressed in the nodes at both the vegetative and reproductive stages. Furthermore, its expression was induced by inorganic phosphate (Pi) deficiency. In the nodes, HvSPDT was expressed in both the xylem and phloem region of enlarged and diffuse vascular bundles. Knockout of HvSPDT decreased the distribution of P to new leaves, but increased the distribution to old leaves at the vegetative growth stage under low P supply. However, knockout of HvSPDT did not alter the redistribution of P from old to young organs. At the reproductive stage, knockout of HvSPDT significantly decreased P allocation to the grains, resulting in a considerable reduction in grain yield, especially under P-limited conditions. Our results indicate that node-based HvSPDT plays a crucial role in loading P into barley grains through preferentially distributing P from the xylem and further to the phloem.


Asunto(s)
Hordeum , Grano Comestible , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
New Phytol ; 234(1): 197-208, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35020209

RESUMEN

Rice is able to accumulate high concentrations of silicon (Si) in the shoots, and this ability is required for the mitigation of abiotic and biotic stresses. Although transporters for Si uptake have been identified, a transporter for the xylem loading of Si has not been found. We functionally characterized a Si transporter, OsLsi3, in terms of tissue-specific localization, knockout line phenotype and mathematic simulation. OsLsi3 was shown to be an efflux Si transporter. OsLsi3 was mainly expressed in the mature root region, and its expression was downregulated by Si. Immunostaining with a specific antibody showed that OsLsi3 was localized to the pericycle in the roots, without polarity. However, when it was expressed under the control of the OsLsi2 promoter, OsLsi3 became polarly localized to the proximal side of both the exodermis and endodermis. Knockout of this gene resulted in decreased Si uptake and concentration in the xylem sap under low Si supply, but not under high Si supply. Mathematical modeling showed that localization of OsLsi3 to the pericycle accounts for c. 30% of the total Si loading to the xylem under low Si concentrations. In summary, OsLsi3 was involved in the xylem loading of Si in rice roots, which is required for the efficient root-to-shoot translocation of Si.


Asunto(s)
Oryza , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Silicio/metabolismo , Xilema/metabolismo
7.
Plant Physiol ; 188(3): 1649-1664, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34893892

RESUMEN

Uptake of boron (B) in rice (Oryza sativa) is mediated by the Low silicon rice 1 (OsLsi1) channel, belonging to the NOD26-like intrinsic protein III subgroup, and the efflux transporter B transporter 1 (OsBOR1). However, it is unknown how these transporters cooperate for B uptake and how they are regulated in response to B fluctuations. Here, we examined the response of these two transporters to environmental B changes at the transcriptional and posttranslational level. OsBOR1 showed polar localization at the proximal side of both the exodermis and endodermis of mature root region, forming an efficient uptake system with OsLsi1 polarly localized at the distal side of the same cell layers. Expression of OsBOR1 and OsLsi1 was unaffected by B deficiency and excess. However, although OsLsi1 protein did not respond to high B at the protein level, OsBOR1 was degraded in response to high B within hours, which was accompanied with a significant decrease of total B uptake. The high B-induced degradation of OsBOR1 was inhibited in the presence of MG-132, a proteasome inhibitor, without disturbance of the polar localization. In contrast, neither the high B-induced degradation of OsBOR1 nor its polarity was affected by induced expression of dominant-negative mutated dynamin-related protein 1A (OsDRP1AK47A) or knockout of the mu subunit (AP2M) of adaptor protein-2 complex, suggesting that clathrin-mediated endocytosis is not involved in OsBOR1 degradation and polar localization. These results indicate that, in contrast to Arabidopsis thaliana, rice has a distinct regulatory mechanism for B uptake through clathrin-independent degradation of OsBOR1 in response to high B.


Asunto(s)
Boro/metabolismo , Clatrina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Oryza/metabolismo , Raíces de Plantas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Clatrina/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Variación Genética , Genotipo , Proteínas de Transporte de Membrana/genética , Mutación , Raíces de Plantas/genética , Plantas Modificadas Genéticamente
8.
Plants (Basel) ; 10(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34685947

RESUMEN

High-salinity stress represses plant growth by inhibiting various metabolic processes. In contrast to the well-studied mechanisms mediating tolerance to high levels of salt, the effects of low levels of salts have not been well studied. In this study, we examined the growth of Arabidopsis thaliana plants under different NaCl concentrations. Interestingly, both shoot and root biomass increased in the presence of 5 mM NaCl, whereas more than 10 mM NaCl decreased plant biomass. To clarify the biological mechanism by which a low level of NaCl stimulated plant growth, we analyzed element accumulation in plants grown under different NaCl concentrations. In addition to the Na and Cl contents, C, S, Zn, and Cu contents were increased under 5 mM NaCl in shoots; this was not observed at higher NaCl concentrations. Adverse effects of high salinity, such as decreased levels of nitrate, phosphate, sulfate, and some cations, did not occur in the presence of 5 mM NaCl. An increase in C was possibly attributed to increased photosynthesis supported by Cl, Zn, and Cu, which also increased in shoots after NaCl application. Salt stress-responsive gene expression was enhanced under 20 mM NaCl but not at lower doses. Among the S metabolites analyzed, cysteine (Cys) was increased by 5 mM NaCl, suggesting that S assimilation was promoted by this dose of NaCl. These results indicate the usefulness of NaCl for plant growth stimulation.

9.
Nat Commun ; 12(1): 6236, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716344

RESUMEN

Silicon (Si), the most abundant mineral element in the earth's crust, is taken up by plant roots in the form of silicic acid through Low silicon rice 1 (Lsi1). Lsi1 belongs to the Nodulin 26-like intrinsic protein subfamily in aquaporin and shows high selectivity for silicic acid. To uncover the structural basis for this high selectivity, here we show the crystal structure of the rice Lsi1 at a resolution of 1.8 Å. The structure reveals transmembrane helical orientations different from other aquaporins, characterized by a unique, widely opened, and hydrophilic selectivity filter (SF) composed of five residues. Our structural, functional, and theoretical investigations provide a solid structural basis for the Si uptake mechanism in plants, which will contribute to secure and sustainable rice production by manipulating Lsi1 selectivity for different metalloids.


Asunto(s)
Acuaporinas/química , Oryza/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ácido Silícico/metabolismo , Silicio/metabolismo , Animales , Acuaporinas/genética , Acuaporinas/metabolismo , Transporte Biológico , Cristalografía por Rayos X , Femenino , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Oocitos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Conformación Proteica , Agua/química , Xenopus laevis
10.
Plant Cell Physiol ; 61(8): 1387-1398, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484878

RESUMEN

About 60-85% of total phosphorus (P) in cereal crops is finally allocated to seeds, where it is required for seed development, germination and early growth. However, little is known about the molecular mechanisms underlying P allocation to seeds. Here, we found that two members (OsPHO1;1 and OsPHO1;2) of the PHO1 gene family are involved in the distribution of P to seeds in rice. Both OsPHO1;1 and OsPHO1;2 were localized to the plasma membrane and showed influx transport activities for inorganic phosphate. At the reproductive stage, both OsPHO1;1 and OsPHO1;2 showed higher expression in node I, the uppermost node connecting to the panicle. OsPHO1;1 was mainly localized at the phloem region of diffuse vascular bundles (DVBs) of node I, while OsPHO1;2 was expressed in the xylem parenchyma cells of the enlarged vascular bundles (EVBs). In addition, they were also expressed in the ovular vascular trace, the outer layer of the inner integument (OsPHO1;1) and in the nucellar epidermis (OsPHO1;2) of caryopses. Knockout of OsPHO1;2, as well as OsPHO1;1 to a lesser extent, decreased the distribution of P to the seed, resulting in decreased seed size and delayed germination. Taken together, OsPHO1;2 expressed in node I is responsible for the unloading of P from the xylem of EVBs, while OsPHO1;1 is involved in reloading P into the phloem of DVBs for subsequent allocation of P to seeds. Furthermore, OsPHO1;1 and OsPHO1;2 expression in the caryopsis is important for delivering P from the maternal tissues to the filial tissues for seed development.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Grano Comestible/metabolismo , Germinación , Especificidad de Órganos , Oryza/metabolismo , Proteínas de Transporte de Fosfato/fisiología , Proteínas de Plantas/fisiología
11.
J Exp Bot ; 71(21): 6789-6798, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-32584998

RESUMEN

Silicon (Si) supplementation has been shown to improve plant tolerance to different stresses, and its accumulation in the aerial organs is mediated by NIP2;1 aquaporins (Lsi channels) and Lsi2-type exporters in roots. In the present study, we tested the hypothesis that grapevine expresses a functional NIP2;1 that accounts for root Si uptake and, eventually, Si accumulation in leaves. Own-rooted grapevine cuttings of the cultivar Vinhão accumulated >0.2% Si (DW) in leaves when irrigated with 1.5 mM Si for 1 month, while Si was undetected in control leaves. Real-time PCR showed that VvNIP2;1 was highly expressed in roots and in green berries. The transient transformation of tobacco leaf epidermal cells mediated by Agrobacterium tumefaciens confirmed VvNIP2;1 localization at the plasma membrane. Transport experiments in oocytes showed that VvNIP2;1 mediates Si and arsenite uptake, whereas permeability studies revealed that VvNIP2;1 expressed in yeast is unable to transport water and glycerol. Si supplementation to pigmented grape cultured cells (cv. Gamay Freáux) had no impact on the total phenolic and anthocyanin content, or on the growth rate and VvNIP2;1 expression. Long-term experiments should help determine the extent of Si uptake over time and whether grapevine can benefit from Si fertilization.


Asunto(s)
Acuaporinas , Vitis , Acuaporinas/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Silicio/metabolismo , Vitis/genética , Vitis/metabolismo
12.
Plant Physiol ; 183(3): 1224-1234, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371522

RESUMEN

Zinc (Zn) is an important essential micronutrient for plants and humans; however, the exact transporter responsible for root zinc uptake from soil has not been identified. Here, we found that OsZIP9, a member of the ZRT-IRT-related protein, is involved in Zn uptake in rice (Oryza sativa) under Zn-limited conditions. OsZIP9 was mainly localized to the plasma membrane and showed transport activity for Zn in yeast (Saccharomyces cerevisiae). Expression pattern analysis showed that OsZIP9 was mainly expressed in the roots throughout all growth stages and its expression was upregulated by Zn-deficiency. Furthermore, OsZIP9 was expressed in the exodermis and endodermis of root mature regions. For plants grown in a hydroponic solution with low Zn concentration, knockout of OsZIP9 significantly reduced plant growth, which was accompanied by decreased Zn concentrations in both the root and shoot. However, plant growth and Zn accumulation did not differ between knockout lines and wild-type rice under Zn-sufficient conditions. When grown in soil, Zn concentrations in the shoots and grains of knockout lines were decreased to half of wild-type rice, whereas the concentrations of other mineral nutrients were not altered. A short-term kinetic experiment with stable isotope 67Zn showed that 67Zn uptake in knockout lines was much lower than that in wild-type rice. Combined, these results indicate that OsZIP9 localized at the root exodermis and endodermis functions as an influx transporter of Zn and contributes to Zn uptake under Zn-limited conditions in rice.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Zinc/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Hidroponía , Marcaje Isotópico , Proteínas de Transporte de Membrana/genética , Especificidad de Órganos/genética , Oryza/genética , Fenotipo , Plantas Modificadas Genéticamente , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Suelo , Fracciones Subcelulares/metabolismo
13.
New Phytol ; 225(3): 1383-1396, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31550387

RESUMEN

Nodulin 26-like intrinsic proteins (NIPs) play essential roles in transporting the nutrients silicon and boron in seed plants, but the evolutionary origin of this transport function and the co-permeability to toxic arsenic remains enigmatic. Horizontal gene transfer of a yet uncharacterised bacterial AqpN-aquaporin group was the starting-point for plant NIP evolution. We combined intense sequence, phylogenetic and genetic context analyses and a mutational approach with various transport assays in oocytes and plants to resolve the transorganismal and functional evolution of bacterial and algal and terrestrial plant NIPs and to reveal their molecular transport specificity features. We discovered that aqpN genes are prevalently located in arsenic resistance operons of various prokaryotic phyla. We provided genetic and functional evidence that these proteins contribute to the arsenic detoxification machinery. We identified NIPs with the ancestral bacterial AqpN selectivity filter composition in algae, liverworts, moss, hornworts and ferns and demonstrated that these archetype plant NIPs and their prokaryotic progenitors are almost impermeable to water and silicon but transport arsenic and boron. With a mutational approach, we demonstrated that during evolution, ancestral NIP selectivity shifted to allow subfunctionalisations. Together, our data provided evidence that evolution converted bacterial arsenic efflux channels into essential seed plant nutrient transporters.


Asunto(s)
Arsénico/metabolismo , Evolución Molecular , Proteínas de la Membrana/genética , Nitrógeno/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo , Animales , Acuaporinas/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Transporte Biológico , Ácidos Bóricos/metabolismo , Boro/metabolismo , Briófitas/metabolismo , Membrana Celular/metabolismo , Difusión , Metaloides/metabolismo , Mutación/genética , Oocitos/metabolismo , Fenotipo , Filogenia , Proteínas Recombinantes de Fusión/metabolismo , Ácido Silícico/metabolismo , Agua/metabolismo , Xenopus/metabolismo
14.
Mol Plant ; 13(1): 99-111, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31610248

RESUMEN

During plant growth and development mineral elements are preferentially delivered to different organs and tissues to meet the differential demand. It has been shown that the preferential distribution of mineral nutrients in gramineous plants is mediated by node-based transporters, but the mechanisms of preferential distribution in dicots are poorly understood. Here, we report a distinct mechanism for the preferential distribution of phosphorus (P) in Arabidopsis plants, revealed by detailed functional analysis of AtSPDT/AtSULTR3;4 (SULTR-like P Distribution Transporter), a homolog of rice OsSPDT. Like OsSPDT, AtSPDT is localized at the plasma membrane and showed proton-dependent transport activity for P. Interestingly, we found that AtSPDT is mainly expressed in the rosette basal region and leaf petiole, and its expression is up-regulated by P deficiency. Tissue-specific analysis showed that AtSPDT is mainly located in the vascular cambium of different organs, as well as in the parenchyma tissues of both xylem and phloem regions. Knockout of AtSPDT inhibited the growth of new leaves under low P due to decreased P distribution to those organs. The seed yields of the wild-type and atspdt mutant plants are similar, but the seeds of mutant plants contain - less P. These results indicate that AtSPDT localized in the vascular cambium is involved in preferential distribution of P to the developing tissues, through xylem-to-phloem transfer mainly at the rosette basal region and leaf petiole.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Fósforo/metabolismo , Haz Vascular de Plantas/fisiología , Transportadores de Sulfato/genética , Simportadores/genética , Arabidopsis/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
15.
Plant Cell Environ ; 43(3): 732-744, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31724184

RESUMEN

Silicon (Si) accumulation in shoots differs greatly with plant species, but the molecular mechanisms for this interspecific difference are unknown. Here, we isolated homologous genes of rice Si influx (SlLsi1) and efflux (SlLsi2) transporter genes in tomato (Solanum lycopersicum L.) and functionally characterized these genes. SlLsi1 showed transport activity for Si when expressed in both rice lsi1 mutant and Xenopus laevis oocytes. SlLsi1 was constitutively expressed in the roots. Immunostaining showed that SlLsi1 was localized at the plasma membrane of both root tip and basal region without polarity. Furthermore, overexpression of SlLsi1 in tomato increased Si concentration in the roots and root cell sap but did not alter the Si concentration in the shoots. By contrast, two Lsi2-like proteins did not show efflux transport activity for Si in Xenopus oocytes. However, when functional CsLsi2 from cucumber was expressed in tomato, the Si uptake was significantly increased, resulting in higher Si accumulation in the leaves and enhanced tolerance of the leaves to water deficit and high temperature. Our results suggest that the low Si accumulation in tomato is attributed to the lack of functional Si efflux transporter Lsi2 required for active Si uptake although SlLsi1 is functional.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Silicio/metabolismo , Solanum lycopersicum/metabolismo , Adaptación Fisiológica , Clonación Molecular , Deshidratación , Electrólitos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Prueba de Complementación Genética , Respuesta al Choque Térmico , Solanum lycopersicum/genética , Proteínas de Transporte de Membrana/genética , Mutación/genética , Oryza/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Transporte de Proteínas , Fracciones Subcelulares/metabolismo
16.
Bio Protoc ; 8(5): e2755, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-34179281

RESUMEN

Boron (B) is essential for plant growth and taken up by plant roots as boric acid. Under B limitation, B uptake and translocation in plants are dependent on the boric acid channels located in the plasma membrane. Xenopus leavis oocyte is a reliable heterologous expression system to characterize transport activities of boric acid channels and related major intrinsic proteins (aquaporins). Here, we outline the protocols for expression of boric acid channels and boric acid uptake assay in Xenopus leavis oocytes.

17.
Front Plant Sci ; 8: 1187, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28744291

RESUMEN

Silicon is the second most abundant element in soils and is beneficial for plant growth. Although, the localizations and polarities of rice Si transporters have been elucidated, the mechanisms that control the expression of Si transporter genes and the functional reasons for controlling expression are not well-understood. We developed a new model that simulates the dynamics of Si in the whole plant in rice by considering Si transport in the roots, distribution at the nodes, and signaling substances controlling transporter gene expression. To investigate the functional reason for the diurnal variation of the expression level, we compared investment efficiencies (the amount of Si accumulated in the upper leaf divided by the total expression level of Si transporter genes) at different model settings. The model reproduced the gradual decrease and diurnal variation of the expression level of the transporter genes observed by previous experimental studies. The results of simulation experiments showed that a considerable reduction in the expression of Si transporter genes during the night increases investment efficiency. Our study suggests that rice has a system that maximizes the investment efficiency of Si uptake.

18.
Plant Cell Physiol ; 58(9): 1573-1582, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28633293

RESUMEN

Manganese (Mn) cation diffusion facilitators (Mn-CDFs) play important roles in the Mn homeostasis of plants. In rice, the tonoplast-localized Mn-CDF metal tolerance protein 8.1 (MTP8.1) is involved in Mn detoxification in the shoots. This study functionally characterized the Mn-CDF MTP8.2 and determined its contribution to Mn tolerance. MTP8.2 was found to share 68% identity with MTP8.1 and was expressed in both the shoots and roots, but its transcription level was lower than that of MTP8.1. Transient expression of the MTP8.2:green fluorescent protein (GFP) fusion protein and immunoblotting studies indicated that MTP8.2 was also localized to the tonoplast. MTP8.2 expression in yeast conferred tolerance to Mn but not to Fe, Zn, Co, Ni or Cd. MTP8.2 knockdown caused further growth reduction of shoots and roots in the mtp8.1 mutant, which already exhibits stunted growth under conditions of excess Mn. In the presence of high Mn, the MTP8.2 knockdown lines of the mtp8.1 mutant showed lower root Mn concentrations, as well as lower root:total Mn ratios, than those of wild-type rice and the mtp8.1 mutant. These findings indicate that MTP8.2 mediates Mn tolerance along with MTP8.1 through the sequestration of Mn into the shoot and root vacuoles.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Manganeso/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Vacuolas/metabolismo , Técnicas de Silenciamiento del Gen , Inactivación Metabólica/efectos de los fármacos , Manganeso/toxicidad , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico , Fracciones Subcelulares/metabolismo , Vacuolas/efectos de los fármacos
19.
Plant Cell ; 29(4): 824-842, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28341806

RESUMEN

Boron uptake in Arabidopsis thaliana is mediated by nodulin 26-like intrinsic protein 5;1 (NIP5;1), a boric acid channel that is located preferentially on the soil side of the plasma membrane in root cells. However, the mechanism underlying this polar localization is poorly understood. Here, we show that the polar localization of NIP5;1 in epidermal and endodermal root cells is mediated by the phosphorylation of Thr residues in the conserved TPG (ThrProGly) repeat in the N-terminal region of NIP5;1. Although substitutions of Ala for three Thr residues in the TPG repeat did not affect lateral diffusion in the plasma membrane, these substitutions inhibited endocytosis and strongly compromised the polar localization of GFP-NIP5;1. Consistent with this, the polar localization was compromised in µ subunit mutants of the clathrin adaptor AP2. The Thr-to-Ala substitutions did not affect the boron transport activity of GFP-NIP5;1 in Xenopus laevis oocytes but did inhibit the ability to complement boron translocation to shoots and rescue growth defects in nip5;1-1 mutant plants under boron-limited conditions. These results demonstrate that the polar localization of NIP5;1 is maintained by clathrin-mediated endocytosis, is dependent on phosphorylation in the TPG repeat, and is necessary for the efficient transport of boron in roots.


Asunto(s)
Acuaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Boro/metabolismo , Endocitosis/fisiología , Raíces de Plantas/metabolismo , Acuaporinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Endocitosis/genética
20.
Am J Physiol Cell Physiol ; 312(5): C550-C561, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28179233

RESUMEN

Silicon (Si) has long been known to play a major physiological and structural role in certain organisms, including diatoms, sponges, and many higher plants, leading to the recent identification of multiple proteins responsible for Si transport in a range of algal and plant species. In mammals, despite several convincing studies suggesting that silicon is an important factor in bone development and connective tissue health, there is a critical lack of understanding about the biochemical pathways that enable Si homeostasis. Here we report the identification of a mammalian efflux Si transporter, namely Slc34a2 (also termed NaPiIIb), a known sodium-phosphate cotransporter, which was upregulated in rat kidney following chronic dietary Si deprivation. Normal rat renal epithelium demonstrated punctate expression of Slc34a2, and when the protein was heterologously expressed in Xenopus laevis oocytes, Si efflux activity (i.e., movement of Si out of cells) was induced and was quantitatively similar to that induced by the known plant Si transporter OsLsi2 in the same expression system. Interestingly, Si efflux appeared saturable over time, but it did not vary as a function of extracellular [Formula: see text] or Na+ concentration, suggesting that Slc34a2 harbors a functionally independent transport site for Si operating in the reverse direction to the site for phosphate. Indeed, in rats with dietary Si depletion-induced upregulation of transporter expression, there was increased urinary phosphate excretion. This is the first evidence of an active Si transport protein in mammals and points towards an important role for Si in vertebrates and explains interactions between dietary phosphate and silicon.


Asunto(s)
Fosfatos/metabolismo , Silicio/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/química , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/metabolismo , Sodio/metabolismo , Animales , Femenino , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...