Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Infect Chemother ; 30(4): 306-314, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37922985

RESUMEN

Manuka oil and tea tree oil are essential oils with known antibacterial properties that are believed to be caused by one main component: terpinen-4-ol. Terpinen-4-ol has potent antibacterial activity against caries-related microorganisms. However, few studies have investigated the antimicrobial effects of terpinen-4-ol on bacteria in apical periodontitis. Thus, the objective of the present study was to evaluate the antibacterial and antibiofilm potential of terpinen-4-ol against Enterococcus faecalis, Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum, which have all been detected in apical periodontitis. The minimum inhibitory and minimum bactericidal concentrations of terpinen-4-ol were determined to assess its activity against biofilms. The minimum inhibitory concentration of terpinen-4-ol was 0.25% against E. faecalis and F. nucleatum, 0.05% against P. gingivalis, and 0.1% against P. intermedia. The minimum bactericidal concentration of terpinen-4-ol was 1.0% against E. faecalis, 0.2% against P. gingivalis and P. intermedia, and 0.5% against F. nucleatum. In the biofilm evaluations, all terpinen-4-ol-treated bacteria had significant reductions in biofilm viability compared with controls in experiments assessing attachment inhibitory activity. Furthermore, structural alterations and decreased bacterial cell clumping were observed under scanning electron microscopy, and significantly decreased cell survival was noted using fluorescence microscopy. Together, these results suggest that terpinen-4-ol is a potential antibacterial agent with bactericidal properties, and can also act on established biofilms.


Asunto(s)
Antiinfecciosos , Periodontitis Periapical , Terpenos , Humanos , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Bacterias
2.
J Dent Sci ; 18(2): 567-576, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37021273

RESUMEN

Background/purpose: Actin alpha 2, smooth muscle (ACTA2) is an actin isoform that forms the cytoskeleton. Actin plays a crucial role in numerous cellular functions. ACTA2 is a marker of functional periodontal ligament (PDL) fibroblasts and is upregulated by transforming growth factor-ß1 (TGF-ß1); however, the underlying function of ACTA2 in PDL tissue is unknown. We aimed to examine the localization and potential function of ACTA2 in PDL tissues and cells. Materials and methods: RNA expression was determined using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and quantitative RT-PCR. Protein expression was determined using immunofluorescence staining and Western blot analysis. Soluble and insoluble collagen production was examined using the Sircol collagen assay and picrosirius red staining, respectively. Small interfering RNA (siRNA) was used for knockdown assay to examine the effect of ACTA2 in human PDL cells. Results: ACTA2 expression was observed in human primary PDL cells and PDL cell line (2-23 cells). TGF-ß1 upregulated ACTA2, collagen type Ⅰ alpha1 chain (COL1A1), periostin (POSTN), and fibrillin-Ⅰ(FBN1) expression and soluble and insoluble collagen production in 2-23 cells. However, ACTA2 depletion by siRNA strongly suppressed PDL-related gene expression and collagen production compared with those of TGF-ß1-stimulated control cells. Furthermore, ACTA2 knockdown significantly suppressed the phosphorylation of Smad2 and Smad3. Conclusion: ACTA2 plays a crucial role in PDL-related marker expression and collagen production via Smad2/3 phosphorylation. Our findings might contribute to the development of novel and effective periodontal therapies.

3.
Stem Cells Int ; 2020: 9672673, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32724317

RESUMEN

Periodontal ligament (PDL) stem cells (PDLSCs) have been reported as a useful cell source for periodontal tissue regeneration. However, one of the issues is the difficulty of obtaining a sufficient number of PDLSCs for clinical application because very few PDLSCs can be isolated from PDL tissue of donors. Therefore, we aimed to identify a specific factor that converts human PDL cells into stem-like cells. In this study, microarray analysis comparing the gene profiles of human PDLSC lines (2-14 and 2-23) with those of a cell line with a low differentiation potential (2-52) identified the imprinted gene mesoderm-specific transcript (MEST). MEST was expressed in the cytoplasm of 2-23 cells. Knockdown of MEST by siRNA in 2-23 cells inhibited the expression of stem cell markers, such as CD105, CD146, p75NTR, N-cadherin, and NANOG; the proliferative potential; and multidifferentiation capacity for osteoblasts, adipocytes, and chondrocytes. On the other hand, overexpression of MEST in 2-52 cells enhanced the expression of stem cell markers and PDL-related markers and the multidifferentiation capacity. In addition, MEST-overexpressing 2-52 cells exhibited a change in morphology from a spindle shape to a stem cell-like round shape that was similar to 2-14 and 2-23 cell morphologies. These results suggest that MEST plays a critical role in the maintenance of stemness in PDLSCs and converts PDL cells into PDLSC-like cells. Therefore, this study indicates that MEST may be a therapeutic factor for periodontal tissue regeneration by inducing PDLSCs.

4.
J Cell Biochem ; 121(12): 4798-4808, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32115771

RESUMEN

Adrenergic receptors (ARs) are receptors of noradrenalin and adrenalin, of which there are nine different subtypes. In particular, ß2 adrenergic receptor (ß2-AR) is known to be related to the restoration and maintenance of homeostasis in bone and cardiac tissues; however, the functional role of signaling through ß2-AR in periodontal ligament (PDL) tissue has not been fully examined. In this report, we investigated that ß2-AR expression in PDL tissues and their features in PDL cells. ß2-AR expressed in rat PDL tissues and human PDL cells (HPDLCs) derived from two different patients (HPDLCs-2G and -3S). Rat PDL tissue with occlusal loading showed high ß2-AR expression, while its expression was downregulated in that without loading. In HPDLCs, ß2-AR expression was increased exposed to stretch loading. The gene expression of PDL-related molecules was investigated in PDL clone cells (2-23 cells) overexpressing ß2-AR. Their gene expression and intracellular cyclic adenosine monophosphate (cAMP) levels were also investigated in HPDLCs treated with a specific ß2-AR agonist, fenoterol (FEN). Overexpression of ß2-AR significantly promoted the gene expression of PDL-related molecules in 2 to 23 cells. FEN led to an upregulation in the expression of PDL-related molecules and increased intracellular cAMP levels in HPDLCs. In both HPDLCs, inhibition of cAMP signaling by using protein kinase A inhibitor suppressed the FEN-induced gene expression of α-smooth muscle actin. Our findings suggest that the occlusal force is important for ß2-AR expression in PDL tissue and ß2-AR is involved in fibroblastic differentiation and collagen synthesis of PDL cells. The signaling through ß2-AR might be important for restoration and homeostasis of PDL tissue.

5.
J Periodontal Res ; 54(2): 143-153, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30284717

RESUMEN

OBJECTIVE: In this study, we measured the expression of R-spondin 2 (RSPO2) in periodontal ligament (PDL) tissue and cells. Further, we examined the effects of RSPO2 on osteoblastic differentiation of immature human PDL cells (HPDLCs). BACKGROUND: R-spondin (RSPO) family proteins are secreted glycoproteins that play important roles in embryonic development and tissue homeostasis through activation of the Wnt/ß-catenin signaling pathway. RSPO2, a member of the RSPO family, has been reported to enhance osteogenesis in mice. However, little is known regarding the roles of RSPO2 in PDL tissues. METHODS: Expression of RSPO2 in rat PDL tissue and primary HPDLCs was examined by immunohistochemical and immunofluorescence staining, as well as by semiquantitative RT-PCR. The effects of stretch loading on the expression of RSPO2 and Dickkopf-related protein 1 (DKK1) were assessed by quantitative RT-PCR. Expression of receptors for RSPOs, such as Leucine-rich repeat-containing G-protein-coupled receptors (LGRs) 4, 5, and 6 in immature human PDL cells (cell line 2-14, or 2-14 cells), was investigated by semiquantitative RT-PCR. Mineralized nodule formation in 2-14 cells treated with RSPO2 under osteoblastic inductive condition was examined by Alizarin Red S and von Kossa stainings. Nuclear translocation of ß-catenin and expression of active ß-catenin in 2-14 cells treated with RSPO2 were assessed by immunofluorescence staining and Western blotting analysis, respectively. In addition, the effect of Dickkopf-related protein 1 (DKK1), an inhibitor of Wnt/ß-catenin signaling, was also examined. RESULTS: Rat PDL tissue and HPDLCs expressed RSPO2, and HPDLCs also expressed RSPO2, while little was found in 2-14 cells. Expression of RSPO2 as well as DKK1 in HPDLCs was significantly upregulated by exposure to stretch loading. LGR4 was predominantly expressed in 2-14 cells, which expressed low levels of LGR5 and LGR6. RSPO2 enhanced the Alizarin Red S and von Kossa-positive reactions in 2-14 cells. In addition, DKK1 suppressed nuclear translocation of ß-catenin, activation of ß-catenin, and increases of Alizarin Red S and von Kossa-positive reactions in 2-14 cells, all of which were induced by RSPO2 treatment. CONCLUSION: RSPO2, which is expressed in PDL tissue and cells, might play an important role in regulating the osteoblastic differentiation of immature human PDL cells through the Wnt/ß-catenin signaling pathway.


Asunto(s)
Diferenciación Celular/genética , Péptidos y Proteínas de Señalización Intercelular/fisiología , Osteoblastos , Ligamento Periodontal/citología , Transducción de Señal/genética , Transducción de Señal/fisiología , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , beta Catenina/genética , beta Catenina/metabolismo , Adulto , Animales , Células Cultivadas , Femenino , Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratas Sprague-Dawley , Adulto Joven
6.
J Cell Physiol ; 234(1): 849-859, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-30078208

RESUMEN

Cellular senescence has been suggested to be involved in physiological changes of cytokine production. Previous studies showed that the concentration of tumor necrosis factor-α (TNF-α) is higher in the blood of aged people compared with that of young people. So far, the precise effects of TNF-α on the odontoblastic differentiation of pulp cells have been controversial. Therefore, we aimed to clarify how this cytokine affected pulp cells during aging. Human dental pulp cells (HDPCs) were cultured until reaching the plateau of their growth, and the cells were isolated at actively (young HDPCs; yHDPCs) or inactively (senescent HDPCs; sHDPCs) proliferating stages. sHDPCs expressed senescence-related molecules while yHDPCs did not. When these HDPCs were cultured in an odontoblast-inductive medium, both young and senescent cells showed mineralization, but mineralization in sHDPCs was lower compared with yHDPCs. However, the administration of TNF-α to this culture medium altered these responses: yHDPCs showed downregulated mineralization, while sHDPCs exhibited significantly increased mineralization. Furthermore, the expression of tumor necrosis factor receptor 1 (TNFR1), a receptor of TNF-α, was significantly upregulated in sHDPCs compared with yHDPCs. Downregulation of TNFR1 expression led to decreased mineralization of TNF-α-treated sHDPCs, whereas restored the reduction in TNF-α-treated yHDPCs. These results suggested that sHDPCs preserved the odontoblastic differentiation capacity and TNF-α promoted odontoblastic differentiation of HDPCs with the progress of their population doublings through increased expression of TNFR1. Thus, TNF-α might exert a different effect on the odontoblastic differentiation of HDPCs depending on their proliferating activity. In addition, the calcification of pulp chamber with age may be related with increased reactivity of pulp cells to TNF-α.


Asunto(s)
Envejecimiento/genética , Pulpa Dental/citología , Odontoblastos/citología , Factor de Necrosis Tumoral alfa/farmacología , Calcificación Fisiológica/genética , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Pulpa Dental/efectos de los fármacos , Pulpa Dental/crecimiento & desarrollo , Técnicas de Silenciamiento del Gen , Humanos , Odontoblastos/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/genética
7.
Stem Cells Dev ; 27(2): 100-111, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29160151

RESUMEN

The periodontal ligament (PDL) plays an important role in anchoring teeth in the bone socket. Damage to the PDL, such as after severe inflammation, can be treated with a therapeutic strategy that uses stem cells derived from PDL tissue (PDLSCs), a strategy that has received intense scrutiny over the past decade. However, there is an insufficient number of PDLSCs within the PDL for treating such damage. Therefore, we sought to induce the differentiation of induced pluripotent stem (iPS) cells into PDLSCs as an initial step toward PDL therapy. To this end, we first induced iPS cells into neural crest (NC)-like cells. We then captured the p75 neurotrophic receptor-positive cells (iPS-NC cells) and cultured them on an extracellular matrix (ECM) produced by human PDL cells (iPS-NC-PDL cells). These iPS-NC-PDL cells showed reduced expression of embryonic stem cell and NC cell markers as compared with iPS and iPS-NC cells, and enrichment of mesenchymal stem cell markers. The cells also had a higher proliferative capacity, multipotency, and elevated expression of PDL-related markers than iPS-NC cells cultured on fibronectin and laminin (iPS-NC-FL cells) or ECM produced by human skin fibroblast cells (iPS-NC-SF cells). Overall, we present a culture method to produce high number of PDLSC-like cells from iPS cells as a first step toward a strategy for PDL regeneration.


Asunto(s)
Diferenciación Celular , Matriz Extracelular/química , Células Madre Pluripotentes Inducidas/metabolismo , Ligamento Periodontal/química , Adulto , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología
8.
J Cell Physiol ; 233(2): 1752-1762, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28681925

RESUMEN

Wnt5a, a non-canonical Wnt protein, is known to play important roles in several cell functions. However, little is known about the effects of Wnt5a on osteoblastic differentiation of periodontal ligament (PDL) cells. Here, we examined the effects of Wnt5a on osteoblastic differentiation and associated intracellular signaling in human PDL stem/progenitor cells (HPDLSCs). We found that Wnt5a suppressed expression of bone-related genes (ALP, BSP, and Osterix) and alizarin red-positive mineralized nodule formation in HPDLSCs under osteogenic conditions. Immunohistochemical analysis revealed that a Wnt5a-related receptor, receptor tyrosine kinase-like orphan receptor 2 (Ror2), was expressed in rat PDL tissue. Interestingly, knockdown of Ror2 by siRNA inhibited the Wnt5a-induced downregulation of bone-related gene expression in HPDLSCs. Moreover, Western blotting analysis showed that phosphorylation of the intracellular signaling molecule, c-Jun N-terminal kinase (JNK) was upregulated in HPDLSCs cultured in osteoblast induction medium with Wnt5a, but knockdown of Ror2 by siRNA downregulated the phosphorylation of JNK. We also examined the effects of JNK inhibition on Wnt5a-induced suppression of osteoblastic differentiation of HPDLSCs. The JNK inhibitor, SP600125 inhibited the Wnt5a-induced downregulation of bone-related gene expression in HPDLSCs. Additionally, SP600125 inhibited the Wnt5a-induced suppression of the alizarin red-positive reaction in HPDLSCs. These results suggest that Wnt5a suppressed osteoblastic differentiation of HPDLSCs through Ror2/JNK signaling. Non-canonical Wnt signaling, including Wnt5a/Ror2/JNK signaling, may function as a negative regulator of mineralization, preventing the development of non-physiological mineralization in PDL tissue.


Asunto(s)
Diferenciación Celular , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células Madre Multipotentes/enzimología , Osteoblastos/enzimología , Osteogénesis , Ligamento Periodontal/enzimología , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Vía de Señalización Wnt , Proteína Wnt-5a/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Masculino , Células Madre Multipotentes/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Ratas Sprague-Dawley , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Transfección , Vía de Señalización Wnt/efectos de los fármacos
9.
Bone ; 101: 191-201, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28506888

RESUMEN

Activation of the G protein-coupled calcium-sensing receptor (CaSR) has crucial roles in skeletal development and bone turnover. Our recent study has identified a role for activated CaSR in the osteogenic differentiation of human periodontal ligament stem cells. Furthermore, odontoblasts residing inside the tooth pulp chamber play a central role in dentin formation. However, it remains unclear how CaSR activation affects the odontoblastic differentiation of human dental pulp cells (HDPCs). We have investigated the odontoblastic differentiation of HDPCs exposed to elevated levels of extracellular calcium (Ca) and strontium (Sr), and the contribution of CaSR and the L-type voltage-dependent calcium channel (L-VDCC) to this process. Immunochemical staining of rat dental pulp tissue demonstrated that CaSR was expressed at high levels in the odontoblastic layer, moderate levels in the sublayer, and low levels in the central pulp tissue. Although normal HDPCs expressed low levels of CaSR, stimulation with Ca or Sr promoted both CaSR expression and odontoblastic differentiation of HDPCs along with increased expression of odontoblastic makers. These effects were inhibited by treatment with a CaSR antagonist, whereas treatment with an L-VDCC inhibitor had no effect. Additionally, knockdown of CaSR with siRNA suppressed odontoblastic differentiation of Ca- and Sr-treated HDPCs. ERK1/2 phosphorylation was observed in Ca- and Sr-treated HDPCs, whereas CaSR antagonist treatment or CaSR knockdown blocked ERK1/2 phosphorylation. Furthermore, inhibition of ERK1/2 suppressed mineralization of Ca- and Sr-treated HDPCs. These results suggest that elevated concentrations of extracellular Ca and Sr induce odontoblastic differentiation of HDPCs through CaSR activation and the ERK1/2 phosphorylation.


Asunto(s)
Pulpa Dental/citología , Odontoblastos/citología , Odontoblastos/efectos de los fármacos , Receptores Sensibles al Calcio/metabolismo , Adulto , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Fluoroinmunoensayo , Humanos , Inmunohistoquímica , Masculino , Naftalenos/farmacología , Osteogénesis/efectos de los fármacos , Receptores Sensibles al Calcio/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Tiofenos/farmacología , Adulto Joven
10.
Arch Oral Biol ; 78: 135-143, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28292713

RESUMEN

OBJECTIVE: The aim of this study was to investigate transforming growth factor-ß-induced gene product-h3 (ßig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). DESIGN: A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. ßig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. RESULTS: Expression of ßig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1ß and tumor necrosis factor-α was increased in exposed pulp tissue. ßig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced ßig-h3 expression in HDPCs, and promoted their mineralization. Recombinant ßig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of ßig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. CONCLUSIONS: The present findings suggest that ßig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process.


Asunto(s)
Diferenciación Celular/genética , Pulpa Dental/citología , Proteínas de la Matriz Extracelular/genética , Odontoblastos/citología , Factor de Crecimiento Transformador beta/genética , Animales , Recubrimiento de la Pulpa Dental , Expresión Génica , Silenciador del Gen , Humanos , Interleucina-1beta/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Necrosis Tumoral alfa/metabolismo
11.
J Cell Biochem ; 118(4): 699-708, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27463736

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) is known to mediate multiple biological activities such as promotion of cell motility and proliferation, and morphogenesis. However, little is known about its effects on periodontal ligament (PDL) cells. Recently, we reported that GDNF expression is increased in wounded rat PDL tissue and human PDL cells (HPDLCs) treated with pro-inflammatory cytokines. Here, we investigated the associated expression of GDNF and the pro-inflammatory cytokine interleukin-1 beta (IL-1ß) in wounded PDL tissue, and whether HPDLCs secrete GDNF which affects neurocytic differentiation. Rat PDL cells near the wounded area showed intense immunoreactions against an anti-GDNF antibody, where immunoreactivity was also increased against an anti-IL-1ß antibody. Compared with untreated cells, HPDLCs treated with IL-1ß or tumor necrosis factor-alpha showed an increase in the secretion of GDNF protein. Conditioned medium of IL-1ß-treated HPDLCs (IL-1ß-CM) increased neurite outgrowth of PC12 rat adrenal pheochromocytoma cells. The expression levels of two neural regeneration-associated genes, growth-associated protein-43 (Gap-43), and small proline-rich repeat protein 1A (Sprr1A), were also upregulated in IL-1ß-CM-treated PC12 cells. These stimulatory effects of IL-1ß-CM were significantly inhibited by a neutralizing antibody against GDNF. In addition, U0126, a MEK inhibitor, inhibited GDNF-induced neurite outgrowth of PC12 cells. These findings suggest that an increase of GDNF in wounded PDL tissue might play an important role in neural regeneration probably via the MEK/ERK signaling pathway. J. Cell. Biochem. 118: 699-708, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Citocinas/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Neuronas/citología , Neuronas/fisiología , Ligamento Periodontal/fisiología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Proteínas Ricas en Prolina del Estrato Córneo/genética , Citocinas/farmacología , Proteína GAP-43/genética , Expresión Génica/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Humanos , Interleucina-1beta/farmacología , Interleucina-1beta/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Neuritas/efectos de los fármacos , Neuritas/fisiología , Neuronas/efectos de los fármacos , Células PC12 , Ligamento Periodontal/citología , Ligamento Periodontal/lesiones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/fisiología
12.
J Cell Physiol ; 230(11): 2647-60, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25655430

RESUMEN

Wnt5a, a member of the noncanonical Wnt proteins, is known to play important roles in the development of various organs and in postnatal cell functions. However, little is known about the effects of Wnt5a on human periodontal ligament (PDL) cells. In this study, we examined the localization and potential function of Wnt5a in PDL tissue. Immunohistochemical analysis revealed that Wnt5a was expressed predominantly in rat PDL tissue. Semi-quantitative reverse-transcription polymerase chain reaction and Western blotting analysis demonstrated that human PDL cells (HPDLCs) expressed Wnt5a and its receptors (Ror2, Fzd2, Fzd4, and Fzd5). Removal of occlusal pressure by extraction of opposing teeth decreased Wnt5a expression in rat PDL tissue, and the expression of Wnt5a and its receptors in HPDLCs was upregulated by exposure to mechanical stress. Stimulation with Wnt5a significantly enhanced the proliferation and migration of HPDLCs. Furthermore, Wnt5a suppressed osteoblastic differentiation of HPDLCs cultivated in osteogenic induction medium, while it significantly enhanced the expression of PDL-related genes, such as periostin, type-I collagen, and fibrillin-1 genes, and the production of collagen in HPDLCs cultivated in normal medium. Both knockdown of periostin gene expression by siRNA and inhibition of TGFß1 function by neutralizing antibody suppressed the Wnt5a-induced PDL-related gene expression and collagen production in HPDLCs. Interestingly, in HPDLCs cultured with Wnt5a, TGFß1 neutralizing antibody significantly suppressed periostin expression, while periostin siRNA had no effect on TGFß1 expression. These results suggest that Wnt5a expressed in PDL tissue plays specific roles in inducing collagen production by PDL cells through TGFß1-mediated upregulation of periostin expression.


Asunto(s)
Moléculas de Adhesión Celular/biosíntesis , Ligamento Periodontal/metabolismo , Proteínas Proto-Oncogénicas/biosíntesis , Factor de Crecimiento Transformador beta1/genética , Proteínas Wnt/biosíntesis , Animales , Moléculas de Adhesión Celular/metabolismo , Colágeno/biosíntesis , Regulación de la Expresión Génica , Humanos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño , Ratas , Estrés Mecánico , Extracción Dental , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA