Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(5): 537, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37012511

RESUMEN

The port ecosystems are prone to deterioration due to the maritime and coastal activities and as a major source of the country's economy need efficient management. Phytoplankton communities can serve as reliable indicators of the prevailing environmental conditions due to their short life cycles. Seasonal sampling was conducted at 26 stations from October 2014 to February 2016 at Kandla port situated in a creek, along the west coast of India. The post-monsoon and monsoon water temperatures were higher (30 °C) whereas pre-monsoon were lower (21 °C). The salinity varied from polyhaline (18-30; monsoon) to euhaline (30 to 45; non-monsoon). The strong currents, high tidal activity, shallow depth areas, and the creek backwater systems make this ecosystem well-mixed and turbid. The annual average trophic index (TRIX) scores indicated very good water quality and low eutrophication, except during pre-monsoon (2.3 ± 0.7 to 4.1 ± 0.2). Based on the cell size, the phytoplankton community was classified into two main groups, i.e., nano-microphytoplankton, which comprised forty-seven species (represented by diatoms, dinoflagellates, and silicoflagellates) and picophytoplankton including two groups (picocyanophytes and picoeukaryotes). The diatoms and picophytoplankton dominated the total biomass and cell abundance, respectively. Only the picophytoplankton exhibited significant seasonal variations in cell abundance and carbon biomass. The lowest monsoon phytoplankton abundance coincided with high turbidity and vice versa during the post-monsoon. The hypersaline pre-monsoon environment with lower annual temperature, relatively lower turbid waters, and increased nutrients favoured higher diatom diversity. These conditions also supported potentially harmful Gymnodinium sp. and bloom-forming Tripos furca and Pyrophacus sp. Overall, ten non-toxic but bloom-forming species were observed. The study provides insights into the phytoplankton community's response to environmental conditions that can have repercussions on the ecosystem's functioning.


Asunto(s)
Diatomeas , Dinoflagelados , Fitoplancton/fisiología , Ecosistema , Monitoreo del Ambiente , Estaciones del Año , India
2.
Microb Ecol ; 85(2): 341-356, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35179631

RESUMEN

The composition and ecology of photosynthetic picoeukaryotes (PPE) are essential for understanding microbial food web functioning. We hypothesize that the simultaneous use of flow cytometry (FCM) and high-performance liquid chromatography (HPLC) tools will aid in discerning the dominant PPE groups contributing to abundance and biomass under prevailing environmental conditions. The PPE seasonal community abundance and pigment biomass were investigated from a southwest monsoon-influenced tropical bay from June 2015 to May 2016. A size-fractionated (<3 µm) approach using FCM and HPLC revealed five and six PPE groups, respectively. Picocryptophytes dominated the PPE biomass under varied environmental conditions, whereas picodiatoms contributed substantially, being abundant under turbulent, low-temperature, nutrient (NO3-, SiO44-)-enriched conditions. The picochlorophytes dominated the community numerically. The relatively higher abundance and biomass of picoprasinophytes and a positive correlation with NO3- and NH4+ imply proliferation under higher nutrient concentrations. The least contributors to biomass were dinoflagellates and picoprymnesiophytes. The relatively larger cell size of picocryptophytes and picodiatoms resulted in higher cumulative biomass, signifying their role in the microbial food web. Our study proposes incorporation of additional indicator pigments in algorithms used to estimate coastal picophytoplankton contribution to total phytoplankton biomass to avoid discrepancies.


Asunto(s)
Bahías , Fitoplancton , Estaciones del Año , Citometría de Flujo , Fotosíntesis , Biomasa
3.
Environ Monit Assess ; 193(9): 548, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34342737

RESUMEN

The phytoplankton community structure exhibits seasonal and spatial variations in response to the environmental conditions, which aids in understanding the ecosystem's health. Given this, four samplings were conducted between October 2013 to April 2015, encompassing the monsoon, post-monsoon, and pre-monsoon seasons, from the Haldia port ecosystem of India. The samples were collected from the flowing estuary and an extended semi-enclosed dock. We hypothesized that the seasonal phytoplankton community (diversity, abundance, and carbon biomass) response will differ based on the environmental and hydrographical characteristics of the study site. Picophytoplankton and nano-microphytoplankton dominated the phytoplankton community in terms of numbers and biomass, respectively. Bacillariophytes dominated the nano-microphytoplankton abundance and total biomass, except during the monsoon when Dinophytes contributed (inner-zone). The dominance of Bacillariophytes and Chlorophytes in the outer-zone with picophytoplankton and Dinophytes in the inner-zone indicated group-specific hydrographic preferences that supported the hypothesis. The positive correlation of the picophytoplankton abundance (pre-monsoon) with Secchi disc depth and the negative correlation of diatoms (post-monsoon) with temperature signify the seasonal role of light and temperature, respectively. The highest nano-microphytoplankton species diversity (Shannon-Wiener's index) during the pre-monsoon (inner-zone) with more rare species indicated the probable influence of stable waters with increased water transparency. However, the community was unevenly distributed in the estuary due to the high abundance of the diatom, Aulacoseira granulata. Although harmful algal blooms were not detected, the higher temperature and nutrient concentrations could have favoured potentially harmful species (Pseudonitzschia delicatissima, Dinophysis acuta) during the monsoon. The system ranged from oligo- to mesotrophic state with moderate pollution levels (Carlson's Trophic State Index and Shannon's Index), indicating a reduction of the nutrient accumulation effects by the existing water renewal frequency. This study recommends incorporating qualitative and quantitative phytoplankton assessment in ecological monitoring of the stable coastal sites to prevent future harmful algal episodes.


Asunto(s)
Ecosistema , Fitoplancton , Monitoreo del Ambiente , Estuarios , India , Ríos , Estaciones del Año , Agua de Mar
4.
Environ Monit Assess ; 190(8): 481, 2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30039305

RESUMEN

Seasonal and spatial phytoplankton distribution in relation to environmental factors was investigated in New Mangalore Port, a major port along the west coast of India. A well-mixed water column characterized the non-monsoon seasons, whereas it was weakly stratified during monsoon. Water quality index (TRIX) scores indicated good water quality except during pre-monsoon (inner zone surface) and monsoon (near bottom waters). Surface abundance of tychopelagic diatoms (Paralia sulcata, Melosira nummuloides, Cylindrotheca closterium, and Nitzschia sigma) was higher during non-monsoon seasons. Certain centric diatoms, e.g., Leptocylindrus danicus, P. sulcata, and Rhizosolenia imbricata, dominated during pre-monsoon (inner zone) and positively correlated with TRIX. High Skeletonema costatum and dinoflagellate abundance during the monsoon season coincided with high nutrient concentrations. Five potential toxic and fourteen harmful/bloom forming algal species were encountered at abundances below the level that can be considered as harmful to the ecosystem. In addition to a baseline database, this study highlights the potential use of certain diatom species as indicators of hydrography and water quality for monitoring dynamic coastal marine ecosystems.


Asunto(s)
Monitoreo del Ambiente , Fitoplancton/clasificación , Biodiversidad , Diatomeas , Dinoflagelados , Ecosistema , India , Fitoplancton/crecimiento & desarrollo , Estaciones del Año , Agua de Mar/química
5.
Scanning ; 2017: 5052646, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29109817

RESUMEN

This paper reports the development of biofilms on stainless steels (SS) upon exposure in a natural freshwater ecosystem for about six months and focuses on the composition of diatom populations. By using environmental scanning electron microscopy (ESEM) technique, we provide a detailed description regarding diatom identification at species level as well as their main characteristics, including type, morphology, ability to form colony, and motility. Results reveal the presence of both prostrate (initial colonizers) and stalked (late colonizers) forms. Pennate diatoms, Cocconeis placentula and Amphora coffeaeformis, and a centric diatom, Melosira varians, are shown to be the abundant forms regardless of the SS type. Pennate diatoms dominate the community and are directly attached to the substratum, whereas the centric form is entangled in the biofilm matrix in a significant number. The dominance of adnate forms suggests that these cells are sturdy and successfully maintaining their population. In situ monitoring of the electrochemical response of immersed materials showed ennoblement of the open circuit potential, which seems to be due to the biogenic production of H2O2, detected in a significant amount within the biofilms. The substantial enrichment of biofilms with diatoms potentially suggests the implication of these microorganisms in the process of ennoblement. A mechanism is proposed in this paper describing the possible interactions of diatom community with SS in the studied ecosystem.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Biota , Diatomeas/clasificación , Diatomeas/aislamiento & purificación , Agua Dulce/microbiología , Diatomeas/citología , Diatomeas/fisiología , Microscopía Electrónica de Rastreo , Acero Inoxidable
6.
Microb Ecol ; 70(3): 659-76, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25851443

RESUMEN

In order to better understand the picophytoplankton (PP) dynamics in tropical monsoon influenced coastal regions, samples were collected daily (June-September 2008: monsoon, December 2008: post-monsoon and April 2009: pre-monsoon) from a fixed station in Dona Paula Bay, India. Eight PP abundance peaks comprising Prochlorococcus-like cells, picoeukaryotes, and three groups of Synechococcus occurred. The chlorophyll biomass and PP abundance were negatively influenced by reduced solar radiation, salinity and water transparency due to precipitation and positively influenced by the stabilized waters during precipitation break/non-monsoon periods. Responses to environmental conditions differed with PP groups, wherein the presence of Synechococcus-PEI (phycoerythrin) throughout the year suggested its ability to tolerate salinity and temperature variations and low light conditions. Synechococcus-PEII appearance toward monsoon end and non-monsoon during high water transparency suggests its tidal advection from offshore waters. Dominance of Synechococcus-PC (phycocyanin) at intermediate salinities under low water transparency during MON and high salinities in PrM coinciding with high nitrate concentrations implies a greater influence of light quality or nutrients. Cyanobacteria and not picoeukaryotes were the dominant picophytoplankton in terms of numbers as well as biomass. This study suggests that PP could be used as tracers of environmental forcing driven by tides and freshwater influx and also highlights the importance of high-frequency samplings in dynamic coastal regions through which transient responses can be captured.


Asunto(s)
Bahías/microbiología , Biodiversidad , Monitoreo del Ambiente/métodos , Fitoplancton/fisiología , Tiempo (Meteorología) , Clima , Estuarios , India , Estaciones del Año
7.
Mar Environ Res ; 92: 133-43, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24094891

RESUMEN

Temporal and spatial variations in Synechococcus abundance were investigated over an annual cycle (February'10-January'11) along a salinity gradient (0-35) in the tropical Zuari estuary, influenced by south-west monsoons. Synechococcus exhibited salinity preferences with phycoerythrin-rich cells at salinities >2 (Synechococcus-PEI), >20 (Synechococcus-PEII) and <1 (Synechococcus-PEIII) whereas phycocyanin-rich (Synechococcus-PC) dominant at lower salinities. Downstream stratification during monsoon caused Synechococcus group segregation in the surface and near-bottom waters. During monsoon-break and non-monsoon period stabilized waters, increased salinity, temperature, solar radiation and low rainfall favored high Synechococcus abundance whereas unstable waters, increased turbidity and low solar radiation during active monsoon lowered abundance. SYN-PC positively co-related with nitrate and phosphate and SYN-PEI with phosphate. Synechococcus contribution to phytoplankton carbon biomass ranged from 9 to 29%. In monsoonal estuaries, rainfall intensity regulates freshwater runoff which modulates the estuarine environment, creating temporal-spatial niche segregation of Synechococcus groups thereby serving as indicator organisms of the estuarine hydrodynamics.


Asunto(s)
Estuarios , Synechococcus/fisiología , Biomasa , Carbono/metabolismo , Agua Dulce/microbiología , India , Ficocianina/metabolismo , Ficoeritrina/metabolismo , Fitoplancton/microbiología , Lluvia , Salinidad , Análisis Espacio-Temporal , Clima Tropical
8.
Biofouling ; 24(6): 415-26, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18668383

RESUMEN

Seasonal variations in the fouling diatom community from a monsoon influenced tropical estuary were investigated. The community composition did not differ significantly between stainless steel and polystyrene substrata due to dominance by Navicula spp. The experimental evidence suggests that Amphora, which is a dominant fouling diatom in temperate waters, ultimately dominates the community in tropical regions when conditions are favourable. These observations reveal that a faster onset of macrofouling interferes with the microfouling community wherein the faster recruiters that have a higher abundance in ambient waters, dominate the community. Seasonal variations were observed in the fouling diatom community. Navicula delicatula dominated during the post-monsoon and tychopelagic diatoms (Melosira and Odontella) were observed during the monsoon. Low diatom abundance was recorded during the pre-monsoon season. The results indicate that although the fouling diatom community composition does not vary between substrata, there is a seasonal change in the community depending on the physical, chemical and biological interactions.


Asunto(s)
Biopelículas , Diatomeas/crecimiento & desarrollo , Diatomeas/fisiología , Estaciones del Año , Análisis de Varianza , Animales , Biodiversidad , India , Poliestirenos , Dinámica Poblacional , Salinidad , Especificidad de la Especie , Acero Inoxidable , Clima Tropical
9.
Biofouling ; 23(1-2): 99-112, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17453734

RESUMEN

Diatoms constitute an important component of the fouling community. Although a lot of work has dealt with the fouling diatom community structure, work on the species interactions within the community is still meagre. In this regard, a study was carried out by transferring natural diatom biofilms into controlled conditions in order to understand the roles of nutrients, initial cell inoculum and seasonal variation in species composition in structuring the fouling diatom community. This community exhibited seasonal variation during the monsoon, post-monsoon and pre-monsoon periods. During each of these seasons, diatom species interactions varied depending upon the species composition. It was observed that excess nutrients favoured those species with comparatively higher growth rates, thereby suppressing the growth of other co-existing species. This competitive trait was found to be effective at an appropriate cell density ratio of the competitive and target species. Understanding such pathways will be useful for modelling the interactions between diatom species in various habitats under different resource conditions.


Asunto(s)
Diatomeas/fisiología , Biopelículas/crecimiento & desarrollo , Ecosistema , India , Biología Marina , Estaciones del Año , Especificidad de la Especie
10.
Cryobiology ; 53(1): 143-7, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16782084

RESUMEN

Two pennate microphytobenthic diatoms, Amphora coffeaeformis (Agardh) Kutzing and Navicula transitans var. derasa f. delicatula Heimdal, were cryopreserved and monitored on thawing to track the mechanical injuries and their post-preservation recovery. Cells were subjected to (1) direct freezing in liquid nitrogen and (2) two-step cooling with and without the cryoprotectant, dimethyl sulfoxide (Me(2)SO). Mechanical injury due to exposure to low temperature differed between the two species. While A. coffeaeformis cells were intact and could survive even direct freezing without a cryoprotectant, N. delicatula cell chloroplasts were damaged. However, the two-step cooling along with a cryoprotectant minimized the mechanical injury to cells of both species thereby enhancing the post-thaw viability.


Asunto(s)
Criopreservación/métodos , Diatomeas/fisiología , Cloroplastos/efectos de los fármacos , Diatomeas/efectos de los fármacos , Diatomeas/ultraestructura , Dimetilsulfóxido/farmacología , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...