Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
J Nephrol ; 19 Suppl 9: S70-5, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16736444

RESUMEN

Acid-base balance is precisely regulated by pulmonary and renal responses while body buffers help to control pH. When its regulation becomes abnormal, accumulation of hydrogen ions cause metabolic acidosis and several responses are activated. These responses interfere with the metabolism of bones and muscle. Metabolic acidosis induces abnormalities in the release and function of several hormones including defects in growth hormone, IGF-1, insulin, glucocorticoids, thyroid hormone, parathyroid hormone and vitamin D. Clinical consequences of these abnormal metabolic responses include impaired growth of infants and children and loss of bone and muscle mass in adults. Notably, abnormalities in bone and muscle metabolism can be present even when there is little or no decrease in the plasma bicarbonate concentration. The abnormalities can be corrected by treatment with NaHCO 3 . In patients with chronic kidney disease, many abnormalities in bone and muscle metabolism can be directly linked to the presence of metabolic acidosis and these abnormalities can be largely corrected by treating acidosis with NaHCO3. Recent insights indicate that several consequences of metabolic acidosis including the development of insulin resistance can stimulate muscle protein degradation by activating proteolytic mechanisms. To avoid abnormalities in metabolism and the loss of bone and muscle, metabolic acidosis must be corrected in normal adults and in patients with kidney disease.


Asunto(s)
Equilibrio Ácido-Base/fisiología , Acidosis/complicaciones , Acidosis/metabolismo , Enfermedades Óseas Metabólicas/etiología , Enfermedades Renales/etiología , Aminoácidos/metabolismo , Enfermedades Óseas Metabólicas/metabolismo , Humanos , Enfermedades Renales/metabolismo , Factores de Riesgo
2.
Am J Physiol Renal Physiol ; 290(6): F1285-94, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16682484

RESUMEN

Amiloride-sensitive epithelial Na+ channels (ENaC) play a crucial role in Na+ transport and fluid reabsorption in the kidney, lung, and colon. The magnitude of ENaC-mediated Na+ transport in epithelial cells depends on the average open probability of the channels and the number of channels on the apical surface of epithelial cells. The number of channels in the apical membrane, in turn, depends on a balance between the rate of ENaC insertion and the rate of removal from the apical membrane. ENaC is made up of three homologous subunits: alpha, beta, and gamma. The COOH-terminal domain of all three subunits is intracellular and contains a proline-rich motif (PPxY). Mutations or deletion of this PPxY motif in the beta- and gamma-subunits prevent the binding of one isoform of a specific ubiquitin ligase, neural precursor cell-expressed, developmentally downregulated protein (Nedd4-2), to the channel in vitro and in transfected cell systems, thereby impeding ubiquitin conjugation of the channel subunits. Ubiquitin conjugation would seem to imply that ENaC turnover is determined by the ubiquitin-proteasome system, but when Madin-Darby canine kidney cells are transfected with ENaC, ubiquitin conjugation apparently leads to lysosomal degradation. However, in untransfected renal cells (A6) expressing endogenous ENaC, ENaC is indeed degraded by the ubiquitin-proteasome system. Nonetheless, in both transfected and untransfected cells, the rate of ENaC degradation is apparently controlled by Nedd4-2 activity. In this review, we discuss the role of the ubiquitin conjugation and the alternative degradative pathways (lysosomal or proteasomal) in regulating the rate of ENaC turnover in untransfected renal cells and compare this regulation to that of transfected cell systems.


Asunto(s)
Células Epiteliales/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Canales de Sodio/fisiología , Ubiquitina/metabolismo , Animales , Transporte Biológico/fisiología , Línea Celular , Perros , Complejos de Clasificación Endosomal Requeridos para el Transporte , Células Epiteliales/metabolismo , Canales Epiteliales de Sodio , Humanos , Riñón , Proteínas de la Membrana/metabolismo , Mutación , Ubiquitina-Proteína Ligasas Nedd4 , Prolina , Subunidades de Proteína/química , Subunidades de Proteína/fisiología , Sodio/metabolismo , Canales de Sodio/química , Canales de Sodio/genética , Relación Estructura-Actividad , Transfección , Ubiquitina-Proteína Ligasas/metabolismo
3.
Am J Physiol Renal Physiol ; 289(1): F107-16, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15769939

RESUMEN

Amiloride-sensitive epithelial sodium channels (ENaC) are responsible for transepithelial Na(+) transport in the kidney, lung, and colon. The channel consists of three subunits (alpha, beta, and gamma). In Madin-Darby canine kidney (MDCK) cells and Xenopus laevis oocytes transfected with all three ENaC subunits, neural precursor cell-expressed developmentally downregulated protein (Nedd4-2) promotes ubiquitin conjugation of ENaC. For native proteins in some cells, ubiquitin conjugation is a signal for their degradation by the ubiquitin-proteasome pathway, whereas in other cell types ubiquitin conjugation is a signal for endocytosis and lysosomal protein degradation. When ENaC are transfected into MDCK cells, ubiquitin conjugation leads to lysosomal degradation. In this paper, we characterize the involvement of the ubiquitin-proteasome proteolytic pathway in the regulation of functional ENaC in untransfected renal A6 cells expressing native ENaC subunits. In contrast to transfected cells, we show that total cellular alpha-, beta-, and gamma-ENaC subunits are polyubiquitinated and that ubiquitin conjugation of subunits increases when the cells are treated with a proteasome inhibitor. We show that Nedd4-2 is associated with alpha- and beta-subunits and is associated with the apical membrane. We also show the Nedd4-2 can regulate the number of functional ENaC subunits in the apical membrane. The results reported here suggest that the ubiquitin-proteasome proteolytic pathway is an important determinant of ENaC function in untransfected renal cells expressing endogenous ENaC.


Asunto(s)
Riñón/metabolismo , Poliubiquitina/fisiología , Canales de Sodio/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Línea Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte , Células Epiteliales/metabolismo , Canales Epiteliales de Sodio , Riñón/citología , Ubiquitina-Proteína Ligasas Nedd4 , Proteínas de Xenopus , Xenopus laevis
4.
Eur J Clin Invest ; 35(3): 157-63, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15733069

RESUMEN

Muscle atrophy is a prominent feature of chronic kidney disease (CKD) and is frequent in other catabolic conditions. Results from animal models of these conditions as well as patients indicate that atrophy is mainly owing to accelerated muscle proteolysis in the ubiquitin-proteasome (Ub-P'some) proteolytic system. The Ub-P'some system, however, rapidly degrades actin or myosin but cannot breakdown actomyosin or myofibrils. Consequently, another protease must initially cleave the complex structure of muscle. We identified caspase-3 as an initial and potentially rate-limiting proteolytic step that cleaves actomyosin/myofibrils to produce substrates degraded by the Ub-P'some system. In rodent models of CKD and other catabolic conditions, we find that caspase-3 is activated and cleaves actomyosin to actin, myosin and their fragments. This initial proteolytic step in muscle leaves a characteristic footprint, a 14-kDa actin band, providing a potential diagnostic tool to detect muscle catabolism. We also found that stimulation of caspase-3 activity depends on inhibition of IRS-1-associated phosphatidylinositol 3-kinase (PI3K) activity; inhibiting PI3K in muscle cells also leads to expression of a critical E3-ubiquitin-conjugating enzyme involved in muscle protein breakdown: atrogin-1/MAFbx. Thus, protein breakdown by caspase-3 and the ubiquitin-proteasome system in muscle are stimulated by the same signal: a low PI3K activity. These responses could yield therapeutic strategies to block muscle atrophy.


Asunto(s)
Fallo Renal Crónico/metabolismo , Proteínas Musculares/metabolismo , Caspasa 3 , Caspasas/fisiología , Humanos , Atrofia Muscular/metabolismo , Péptido Hidrolasas/fisiología , Transducción de Señal , Ubiquitina/fisiología
5.
Eur J Clin Invest ; 32(5): 345-53, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12027875

RESUMEN

BACKGROUND: Treatment with glucocorticosteroids causes a negative nitrogen balance, but the kinetic mechanisms responsible for this catabolic effect are controversial. We investigated the effects of 60 mg day(-1) prednisolone on protein synthesis and degradation in human skeletal muscle. MATERIALS AND METHODS: Healthy adults (n = 9) were studied in the postabsorptive state, before and after 3 days of prednisolone treatment. The L-[ring 2,6(-3)H(5)]-phenylalanine tracer technique, concentration and size distribution of the ribosomes, mRNA content of the ubiquitin-proteasome pathway components in muscle, phenylalanine flux across the leg, and the free amino acid concentrations in skeletal muscle were used to study muscle protein metabolism. RESULTS: The concentrations of most amino acids in arterial blood increased after prednisolone. There were also increased effluxes of phenylalanine, asparagine, arginine, alanine, methionine and isoleucine from the leg. The rate of protein degradation, as measured by the appearance rate (Ra) of phenylalanine, increased by 67% (P = 0.023) which, together with a doubling of the net release of phenylalanine from the leg (P = 0.007), indicated accelerated protein degradation. The pathway was not identified but there was no significant increase in mRNAs' encoding components of the ubiquitin-proteasome pathway. There was a 6% reduction in polyribosomes (P = 0.007), suggesting a decrease in the capacity for protein synthesis, although there was no measured decrease in the rate of protein synthesis. CONCLUSIONS: These findings indicate that high doses of prednisolone lead to a sharp increase in net protein catabolism, which depends more on enhanced protein breakdown, and an uncertain effect on protein synthesis. The mechanisms stimulating proteolysis and the pathway stimulated to increase muscle protein degradation should be explored.


Asunto(s)
Aminoácidos/metabolismo , Glucocorticoides/farmacología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fenilalanina/metabolismo , Prednisolona/farmacología , Ribosomas/metabolismo , Adulto , Femenino , Glucocorticoides/administración & dosificación , Humanos , Pierna , Masculino , Persona de Mediana Edad , Prednisolona/administración & dosificación , ARN Mensajero/metabolismo , Ubiquitina/metabolismo
6.
Kidney Int ; 60(6): 2360-6, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11737611

RESUMEN

BACKGROUND: Serum albumin concentration predicts mortality in hemodialysis (HD) patients. While serum albumin concentration correlates with serum concentration of C-reactive protein (CRP) and is dependent upon CRP in multiple regression models in cross sectional studies, CRP does not predict future albumin levels, possibly because CRP changes rapidly, yielding large month-to-month variability in CRP. If inflammation causes rather than is simply associated with hypoalbuminemia, then changes in the levels of acute phase proteins should precede changes in serum albumin concentration. METHODS: The levels of long-lived positive and negative acute-phase proteins (APPs) (C-reactive protein, ceruloplasmin, alpha1 acid glycoprotein, transferrin and albumin) were measured longitudinally in 64 HD patients and a regression model was constructed to predict future albumin levels. Normalized protein catabolic rate (nPCR) was measured monthly. The number of repeated measurements ranged from 9 to 39 in each patient (median 22 and a mean of 23 measurements). To construct a model that would predict serum albumin concentration at any time j, values of all longitudinally measured APPs, positive and negative at any time j - 1, approximately 30 days prior to time j, were used. Other demographic factors (such as, race, access type, and cause of renal failure) also were incorporated into the model. RESULTS: The model with the best fit for predicting serum albumin at time j included albumin, ceruloplasmin, and alpha1 acid glycoprotein measured at time j - 1. The only demographic variable with subsequent predictive value was diabetes. CONCLUSIONS: The finding that changes in the concentration of the long lived APPs measured one month earlier are associated with predictable changes in the future concentration of serum albumin suggest that changes in inflammation are likely to be causal in determining serum albumin concentration in hemodialysis patients.


Asunto(s)
Ceruloplasmina/metabolismo , Orosomucoide/metabolismo , Diálisis Renal , Albúmina Sérica/análisis , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Predicción , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Modelos Biológicos , Concentración Osmolar
8.
Am J Kidney Dis ; 38(6): 1337-42, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11728972

RESUMEN

The daily turnover of cellular proteins is large, with amounts equivalent to the protein contained in 1.0 to 1.5 kg of muscle. Consequently, even a small, persistent increase in the rate of protein degradation or decrease in protein synthesis will result in substantial loss of muscle mass. Activation of protein degradation in the ubiquitin-proteasome system is the mechanism contributing to loss of muscle mass in kidney disease. Because other catabolic conditions also stimulate this system to cause loss of muscle mass, the identification of activating signals is of interest. A complication of kidney disease, metabolic acidosis, activates this system in muscle by a process that requires glucocorticoids. The influence of inflammatory cytokines on this system in muscle is more complicated, as evidence indicates that cytokines suppress the system, but glucocorticoids block the effect of cytokines to slow protein breakdown in the system. New information identifying mechanisms that activate protein breakdown and the rebuilding of muscle fibers would lead to therapies that successfully prevent the loss of muscle mass in kidney disease and other catabolic illnesses.


Asunto(s)
Enfermedades Renales/complicaciones , Debilidad Muscular/etiología , Acidosis/metabolismo , Adulto , Cisteína Endopeptidasas/metabolismo , Citocinas/metabolismo , Humanos , Inflamación/complicaciones , Enfermedades Renales/metabolismo , Complejos Multienzimáticos/metabolismo , Debilidad Muscular/metabolismo , Complejo de la Endopetidasa Proteasomal , Ubiquitina/metabolismo
9.
Ugeskr Laeger ; 163(40): 5514-9, 2001 Oct 01.
Artículo en Danés | MEDLINE | ID: mdl-11601117

RESUMEN

INTRODUCTION: Diabetic nephropathy is the leading cause of end-stage renal disease. Interruption of the renin-angiotensin system slows the progression of renal disease in type 1 diabetic patients, but similar data are not available for type 2, the most common form of diabetes. We assessed the role of the angiotensin II receptor antagonist, losartan, in type 2 diabetic patients with nephropathy. MATERIAL AND METHODS: One thousand five hundred and thirteen patients were enrolled in this randomised, placebo-controlled study of losartan (50 to 100 mg, once daily) or placebo, in addition to conventional antihypertensive treatment (calcium antagonists, diuretics, alpha- and beta-blockers, centrally acting agents) for a mean of 3.4 years. The primary outcome was the composite of doubling of baseline serum creatinine, end-stage renal disease, or death. Secondary end points included a composite of cardiovascular morbidity and mortality, proteinuria, and the progression rate of renal disease. RESULTS: Baseline demographics in the two groups were similar. Three hundred and twenty-seven patients receiving losartan reached the primary end point, as compared with 359 on placebo (risk reduction = 16 per cent, p = 0.02). Losartan reduced the incidence of doubling of serum creatinine (risk reduction = 25 per cent, p = 0.006) and end-stage renal disease (risk reduction = 28 per cent, p = 0.002), but had no effect on death. Benefits exceeded that attributable to changes in blood pressure. The composite of cardiovascular morbidity and mortality was similar in the two groups, except hospitalisation for heart failure, which was reduced with losartan (risk reduction = 32 per cent, p = 0.005). Proteinuria declined by 35 per cent with losartan (p < 0.001). DISCUSSION: Losartan conferred significant renal benefits in type 2 diabetic patients with nephropathy and was generally well tolerated.


Asunto(s)
Angiotensina II/antagonistas & inhibidores , Antihipertensivos/administración & dosificación , Enfermedades Cardiovasculares/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Angiopatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Losartán/administración & dosificación , Adulto , Anciano , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/prevención & control , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/prevención & control , Método Doble Ciego , Humanos , Masculino , Persona de Mediana Edad , Sistema Renina-Angiotensina/efectos de los fármacos
10.
N Engl J Med ; 345(12): 861-9, 2001 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-11565518

RESUMEN

BACKGROUND: Diabetic nephropathy is the leading cause of end-stage renal disease. Interruption of the renin-angiotensin system slows the progression of renal disease in patients with type 1 diabetes, but similar data are not available for patients with type 2, the most common form of diabetes. We assessed the role of the angiotensin-II-receptor antagonist losartan in patients with type 2 diabetes and nephropathy. METHODS: A total of 1513 patients were enrolled in this randomized, double-blind study comparing losartan (50 to 100 mg once daily) with placebo, both taken in addition to conventional antihypertensive treatment (calcium-channel antagonists, diuretics, alpha-blockers, beta-blockers, and centrally acting agents), for a mean of 3.4 years. The primary outcome was the composite of a doubling of the base-line serum creatinine concentration, end-stage renal disease, or death. Secondary end points included a composite of morbidity and mortality from cardiovascular causes, proteinuria, and the rate of progression of renal disease. RESULTS: A total of 327 patients in the losartan group reached the primary end point, as compared with 359 in the placebo group (risk reduction, 16 percent; P=0.02). Losartan reduced the incidence of a doubling of the serum creatinine concentration (risk reduction, 25 percent; P=0.006) and end-stage renal disease (risk reduction, 28 percent; P=0.002) but had no effect on the rate of death. The benefit exceeded that attributable to changes in blood pressure. The composite of morbidity and mortality from cardiovascular causes was similar in the two groups, although the rate of first hospitalization for heart failure was significantly lower with losartan (risk reduction, 32 percent; P=0.005). The level of proteinuria declined by 35 percent with losartan (P<0.001 for the comparison with placebo). CONCLUSIONS: Losartan conferred significant renal benefits in patients with type 2 diabetes and nephropathy, and it was generally well tolerated.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Antihipertensivos/uso terapéutico , Enfermedades Cardiovasculares/mortalidad , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/tratamiento farmacológico , Fallo Renal Crónico/prevención & control , Losartán/uso terapéutico , Adulto , Anciano , Enfermedades Cardiovasculares/epidemiología , Creatina/sangre , Creatinina/sangre , Nefropatías Diabéticas/complicaciones , Progresión de la Enfermedad , Método Doble Ciego , Femenino , Humanos , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Proteinuria/prevención & control
11.
Endocrinology ; 142(4): 1489-96, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11250929

RESUMEN

We previously showed that angiotensin II (ang II) infusion in the rat produces cachexia and decreases circulating insulin-like growth factor I (IGF-I). The weight loss derives from an anorexigenic response and a catabolic effect of ang II. In these experiments we assessed potential catabolic mechanisms and the involvement of the IGF-I system in these responses to ang II. Ang II infusion caused a significant decrease in body weight compared with that of pair-fed control rats. Kidney and left ventricular weights were significantly increased by ang II, whereas fat tissue was unchanged. Skeletal muscle mass was significantly decreased in the ang II-infused rats, and a reduction in lean muscle mass was a major reason for their overall loss of body weight. In skeletal muscles, ang II did not significantly decrease protein synthesis, but overall protein breakdown was accelerated; inhibiting lysosomal and calcium-activated proteases did not reduce the ang II-induced increase in muscle proteolysis. Circulating IGF-I levels were 33% lower in ang II rats vs. control rats, and this difference was reflected in lower IGF-I messenger RNA levels in the liver. Moreover, IGF-I, IGF-binding protein-3, and IGF-binding protein-5 messenger RNAs in the gastrocnemius were significantly reduced. To investigate whether the reduced circulating IGF-I accounts for the loss in muscle mass, we increased circulating IGF-I by coinfusing ang II and IGF-I, but this did not prevent muscle loss. Our data suggest that ang II causes a loss in skeletal muscle mass by enhancing protein degradation probably via its inhibitory effect on the autocrine IGF-I system.


Asunto(s)
Angiotensina II/farmacología , Comunicación Autocrina/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Síndrome Debilitante/inducido químicamente , Animales , Northern Blotting , Western Blotting , Peso Corporal/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Proteínas Musculares/biosíntesis , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Ensayos de Protección de Nucleasas , Tamaño de los Órganos/efectos de los fármacos , ARN Mensajero/biosíntesis , Radioinmunoensayo , Ratas , Ratas Sprague-Dawley , Síndrome Debilitante/patología
13.
J Biol Chem ; 276(16): 12903-10, 2001 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-11278712

RESUMEN

Amiloride-sensitive epithelial Na(+) channels (ENaC) are responsible for trans-epithelial Na(+) transport in the kidney, lung, and colon. The channel consists of three subunits (alpha, beta, gamma) each containing a proline rich region (PPXY) in their carboxyl-terminal end. Mutations in this PPXY domain cause Liddle's syndrome, an autosomal dominant, salt-sensitive hypertension, by preventing the channel's interactions with the ubiquitin ligase Neural precursor cell-expressed developmentally down-regulated protein (Nedd4). It is postulated that this results in defective endocytosis and lysosomal degradation of ENaC leading to an increase in ENaC activity. To show the pathway that degrades ENaC in epithelial cells that express functioning ENaC channels, we used inhibitors of the proteosome and measured sodium channel activity. We found that the inhibitor, MG-132, increases amiloride-sensitive trans-epithelial current in Xenopus distal nephron A6 cells. There also is an increase of total cellular as well as membrane-associated ENaC subunit molecules by Western blotting. MG-132-treated cells also have increased channel density in patch clamp experiments. Inhibitors of lysosomal function did not reproduce these findings. Our results suggest that in native renal cells the proteosomal pathway is an important regulator of ENaC function.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Complejos Multienzimáticos/metabolismo , Canales de Sodio/metabolismo , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Animales , Especificidad de Anticuerpos , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Inhibidores de Cisteína Proteinasa/farmacología , Canales Epiteliales de Sodio , Humanos , Cinética , Leupeptinas/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Modelos Biológicos , Datos de Secuencia Molecular , Nefronas , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Complejo de la Endopetidasa Proteasomal , Subunidades de Proteína , Canales de Sodio/química , Canales de Sodio/genética , Urotelio/citología , Urotelio/fisiología , Xenopus laevis
15.
Am J Kidney Dis ; 37(1 Suppl 2): S112-4, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11158874

RESUMEN

Loss of muscle mass is a risk factor for mortality in chronic renal failure (CRF). Catabolic signals (eg, acidosis, glucocorticoids, insulin resistance) present in CRF stimulate the ubiquitin-proteasome proteolytic pathway in muscle but the activation mechanism(s) have been elusive. We have identified distinct mechanisms that may work in concert to increase the degradation of muscle proteins. Glucocorticoids increase the transcription of genes encoding components of the ubiquitin-proteasome pathway, thereby increasing the proteolytic capacity of muscle cells. Another signal could be a decreased response to insulin because acute diabetes is a potent stimulus for protein degradation by the ubiquitin-proteasome pathway and CRF impairs insulin signaling in muscle. Together, these responses increase the breakdown of muscle, contributing to protein malnutrition in CRF.


Asunto(s)
Proteínas Musculares/metabolismo , Enfermedades Musculares/metabolismo , Síndrome Debilitante/metabolismo , Animales , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Dexametasona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Humanos , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Proteínas Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Enfermedades Musculares/etiología , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Complejo de la Endopetidasa Proteasomal , Ratas , Transducción de Señal , Ubiquitinas/metabolismo , Síndrome Debilitante/etiología
18.
Semin Dial ; 13(4): 227-31, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10923349

RESUMEN

Much has been learned from animal studies in chronic renal failure that is germane to clinical studies because animal models parallel human responses. Such studies have affirmed that correction of metabolic acidosis has a favorable effect on protein metabolism, nitrogen balance and growth. In the presence of metabolic acidosis, catabolism is increased in uremia. Glucocorticoids are involved in accelerating protein degradation in muscle, which results in loss of lean body mass, while a low insulin level appears to play a permissive role in accelerating increased catabolism. Cellular mechanisms mediating these changes include upregulation of the ubiquitin-proteasome pathway and branched-chain ketoacid dehydrogenase enzyme activity in muscle. Many of these findings from rat studies have been confirmed in human studies and have important clinical implications because correction of metabolic acidosis improves nutritional status and blunts the associated increase in protein catabolism.


Asunto(s)
Acidosis/metabolismo , Glucocorticoides/efectos adversos , Enfermedades Renales/metabolismo , Proteínas Musculares/metabolismo , Síndrome Debilitante/metabolismo , Desequilibrio Ácido-Base/complicaciones , Desequilibrio Ácido-Base/metabolismo , Acidosis/complicaciones , Animales , Glucocorticoides/biosíntesis , Humanos , Enfermedades Renales/complicaciones , Ratas , Especificidad de la Especie , Síndrome Debilitante/complicaciones
19.
Trans Am Clin Climatol Assoc ; 111: 258-69; discussion 269-70, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10881345

RESUMEN

In summary, muscle protein loss in uremia is related to activation of the ubiquitin-proteasome proteolytic system to degrade muscle proteins. This response invariably includes increased transcription of genes encoding components of this pathway, suggesting that these illnesses stimulate a program of catabolism. Signals that could activate muscle protein degradation by this system in CRF include metabolic acidosis, impaired response to insulin and high circulating levels of cytokines. The activation mechanism also involves glucocorticoids which are necessary but not sufficient to activate protein degradation in muscle.


Asunto(s)
Atrofia Muscular/etiología , Desnutrición Proteico-Calórica/complicaciones , Adenosina Trifosfato/metabolismo , Animales , Cisteína Endopeptidasas/metabolismo , Humanos , Complejos Multienzimáticos/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Complejo de la Endopetidasa Proteasomal , Desnutrición Proteico-Calórica/metabolismo , Transducción de Señal , Ubiquitinas/metabolismo , Uremia/complicaciones , Uremia/metabolismo
20.
Biochem Biophys Res Commun ; 274(2): 537-41, 2000 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-10913373

RESUMEN

UbC is one of three members of the ubiquitin gene family. We have cloned the rat UbC promoter and used primer extension analysis to map the UbC site of transcription initiation to 63 bp upstream of the putative first intron. We used a rat UbC promoter-luciferase reporter minigene to transfect H9c2 cardiomyocytes, HepG2 hepatocytes, CaCo2 colon cells, NIH3T3 fibroblasts or L6 myocytes and found the rat UbC promoter has constitutive activity. We also showed that dexamethasone stimulated the UbC promoter in L6 myocytes. Finally, we showed that a UbC-specific sequence at the 3' end of the rat UbC mRNA transcript can be used to selectively and quantitatively measure UbC: (1) mRNA using a RNase protection assay, and (2) transcription using a nuclear run-off assay to measure the rate of transcription of the UbC gene. These findings will be useful in studying the regulation of the UbC gene.


Asunto(s)
Regiones no Traducidas 3'/genética , Expresión Génica , Regiones Promotoras Genéticas , ARN Mensajero/genética , Ubiquitinas/genética , Animales , Secuencia de Bases , Northern Blotting , Línea Celular , Clonación Molecular , Cricetinae , Dexametasona/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Isoenzimas/genética , Datos de Secuencia Molecular , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Especificidad de Órganos , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...