Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38174987

RESUMEN

To clarify our understanding of glial phagocytosis in retinal development, we used real-time imaging of larval zebrafish to provide cell-type specific resolution of this process. We show that radial Müller glia frequently participate in microglial phagocytosis while also completing a subset of phagocytic events. Müller glia actively engage with dying cells through initial target cell contact and phagocytic cup formation, after which an exchange of the dying cell from Müller glia to microglia often takes place. In addition, we find evidence that Müller glia cellular material, possibly from the initial Müller cell phagocytic cup, is internalized into microglial compartments. Previously undescribed Müller cell behaviors were seen, including cargo splitting, wrestling for targets and lateral passing of cargo to neighbors. Collectively, our work provides new insight into glial functions and intercellular interactions, which will allow future work to understand these behaviors on a molecular level.


Asunto(s)
Eferocitosis , Microglía , Animales , Pez Cebra , Neuroglía , Fagocitosis , Retina
2.
bioRxiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37873206

RESUMEN

To clarify our understanding of glial phagocytosis in retinal development, we used real time imaging of larval zebrafish to provide cell-type specific resolution of this process. We show that radial Müller glia frequently participate in microglial phagocytosis while also completing a subset of phagocytic events. Müller glia (MG) actively engage with dying cells through initial target cell contact and phagocytic cup formation after which an exchange of the dying cell from MG to microglia often takes place. Additionally, we find evidence that Müller glia cellular material, possibly from the initial Müller cell's phagocytic cup, is internalized into microglial compartments. Previously undescribed Müller cell behaviors were seen, including cargo splitting, wrestling for targets, lateral passing of cargo to neighbors, and engulfment of what is possibly synaptic puncta. Collectively, our work provides new insight into glial functions and intercellular interactions, which will allow future work to understand these behaviors on a molecular level.

3.
Methods Mol Biol ; 2636: 221-235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36881303

RESUMEN

Zebrafish regenerate functional retinal neurons after injury. Regeneration takes place following photic, chemical, mechanical, surgical, or cryogenic lesions, as well as after lesions that selectively target specific neuronal cell populations. An advantage of chemical retinal lesion for studying the process of regeneration is that the lesion is topographically widespread. This results in the loss of visual function as well as a regenerative response that engages nearly all stem cells (Müller glia). Such lesions can therefore be used to further our understanding of the process and mechanisms underlying re-establishment of neuronal wiring patterns, retinal function, and visually mediated behaviors. Widespread chemical lesions also permit the quantitative analysis of gene expression throughout the retina during the period of initial damage and over the duration of regeneration, as well as the study of growth and targeting of axons of regenerated retinal ganglion cells. The neurotoxic Na+/K+ ATPase inhibitor ouabain specifically offers a further advantage over other types of chemical lesions in that it is scalable; the extent of damage can be targeted to include only inner retinal neurons, or all retinal neurons, simply by adjusting the intraocular concentration of ouabain that is used. Here we describe the procedure through which these "selective" vs. "extensive" retinal lesions can be generated.


Asunto(s)
Ouabaína , Pez Cebra , Animales , Ouabaína/farmacología , Inyecciones Intraoculares , Axones , Neuroglía
4.
Methods Mol Biol ; 2636: 389-400, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36881312

RESUMEN

Detection of the protein PCNA (proliferating cell nuclear antigen) is used to identify cells in the S phase of the cell cycle to indicate cellular proliferation. Here we describe our method to detect PCNA expression by microglia and macrophages in retinal cryosections. We have used this procedure with zebrafish tissue, but this procedure could be applied to cryosections from any organism. Retinal cryosections are subjected to a heat-mediated antigen retrieval step in Citrate Buffer, then immunostained with antibodies to label PCNA and microglia/macrophages, and counterstained for cell nuclei. After fluorescent microscopy, the number of total and PCNA+ microglia/macrophages can be quantified and normalized to compare across samples and groups.


Asunto(s)
Microglía , Pez Cebra , Animales , Antígeno Nuclear de Célula en Proliferación , Macrófagos , Coloración y Etiquetado , Proliferación Celular
5.
Methods Mol Biol ; 2636: 421-435, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36881314

RESUMEN

Adult zebrafish respond to retinal injury with a regenerative response that replaces damaged neurons with Müller glia-derived regenerated neurons. The regenerated neurons are functional, appear to make appropriate synaptic connections, and support visually mediated reflexes and more complex behaviors. Curiously, the electrophysiology of damaged, regenerating, and regenerated zebrafish retina has only recently been examined. In our previous work, we demonstrated that electroretinogram (ERG) recordings of damaged zebrafish retina correlate with the extent of the inflicted damage and that the regenerated retina at 80 days post-injury exhibited ERG waveforms consistent with functional visual processing. In this paper we describe the procedure for obtaining and analyzing ERG recordings from adult zebrafish previously subjected to widespread lesions that destroy inner retinal neurons and engage a regenerative response that restores retinal function, in particular the synaptic connections between photoreceptor axon terminals and the dendritic trees of retinal bipolar neurons.


Asunto(s)
Neuronas Retinianas , Pez Cebra , Animales , Retina , Electrorretinografía , Neuroglía
6.
Front Mol Neurosci ; 15: 1070509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36533135

RESUMEN

Introduction: Zebrafish regenerate their retinas following damage, resulting in restoration of visual function. Here we evaluate recovery of retinal function through qualitative and quantitative analysis of the electroretinogram (ERG) over time following retinal damage, in correlation to histological features of regenerated retinal tissue. Methods: Retinas of adult zebrafish were lesioned by intravitreal injection of 10 µM (extensive lesion; destroys all neurons) or 2 µM (selective lesion; spares photoreceptors) ouabain. Unlesioned contralateral retinas served as controls. Function of retinal circuitry was analyzed at selected timepoints using ERG recordings from live zebrafish, and whole eyes were processed for histological analyses immediately thereafter. Results: Qualitative and quantitative assessment of waveforms during retinal regeneration revealed dynamic changes that were heterogeneous on an individual level within each sampling time, but still followed common waveform recovery patterns on a per-fish and population-level basis. Early in the regeneration period (13-30 days post injury; DPI), for both lesion types, b-waves were essentially not detected, and unmasked increased apparent amplitudes, implicit times, and half-widths of a-waves (vs. controls). In control recordings, d-waves were not obviously detected, but apparent d-waves (OFF-bipolar responses) from regenerating retinas of several fish became prominent by 30DPI and dominated the post-photoreceptor response (PPR). Beyond 45DPI, b-waves became detectable, and the ratio of apparent d- to b-wave contributions progressively shifted with most, but not all, fish displaying a b-wave dominated PPR. At the latest timepoints (extensive, 90DPI; selective, 80DPI), recordings with measurable b-waves approached a normal waveform (implicit times and half-widths), but amplitudes were not restored to control levels. Histological analyses of the retinas from which ERGs were recorded showed that as regeneration progressed, PKCa + ON-bipolar terminals and parvalbumin + amacrine cell processes became more stereotypically positioned within the deep sublaminae of the INL over recovery time after each lesion type, consistent with the shift in PPR seen in the ERG recordings. Discussion: Taken together, these data suggest that photoreceptor-OFF-bipolar component/connectivity may functionally recover and mature earlier during regeneration compared to the photoreceptor-ON-bipolar component, though the timeframe in which such recovery happens is heterogeneous on a per-fish basis. Collectively our studies suggest gradual restoration of ON-bipolar functional circuitry during retinal regeneration.

7.
Glia ; 70(7): 1402-1425, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35451181

RESUMEN

Microglia are known for important phagocytic functions in the vertebrate retina. Reports also suggest that Müller glia have phagocytic capacity, though the relative levels and contexts in which this occurs remain to be thoroughly examined. Here, we investigate Müller glial engulfment of dying cells in the developing zebrafish retina in the presence and absence of microglia, using a genetic mutant in which microglia do not develop. We show that in normal conditions clearance of dying cells is dominated by microglia; however, Müller glia do have a limited clearance role. In retinas lacking intact microglial populations, we found a striking increase in the engulfment load assumed by the Müller glia, which displayed prominent cellular compartments containing apoptotic cells, several of which localized with the early phagosome/endosome marker Rab5. Consistent with increased engulfment, lysosomal staining was also increased in Müller glia in the absence of microglia. Increased engulfment load led to evidence of Müller glia reactivity including upregulation of gfap but did not trigger cell cycle re-entry by differentiated Müller glia. Our work provides important insight into the phagocytic capacity of Müller glia and the ability for compensatory functions and downstream effects. Therefore, effects of microglial deficiency or depletion on other glial cell types should be well-considered in experimental manipulations, in neurodegenerative disease, and in therapeutic approaches that target microglia. Our findings further justify future work to understand differential mechanisms and contexts of phagocytosis by glial cells in the central nervous system, and the significance of these mechanisms in health and disease.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Animales , Células Ependimogliales/metabolismo , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuroglía , Retina , Pez Cebra
8.
Biol Open ; 11(1)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34878094

RESUMEN

Transcriptome analyses performed in both human and zebrafish indicate strong expression of Apoe and Apoc1 by microglia. Apoe expression by microglia is well appreciated, but Apoc1 expression has not been well-examined. PPAR/RXR and LXR/RXR receptors appear to regulate expression of the apolipoprotein gene cluster in macrophages, but a similar role in microglia in vivo has not been studied. Here, we characterized microglial expression of apoc1 in the zebrafish central nervous system (CNS) in situ and demonstrate that in the CNS, apoc1 expression is unique to microglia. We then examined the effects of PPAR/RXR and LXR/RXR modulation on microglial expression of apoc1 and apoeb during early CNS development using a pharmacological approach. Changes in apoc1 and apoeb transcripts in response to pharmacological modulation were quantified by RT-qPCR in whole heads, and in individual microglia using hybridization chain reaction (HCR) in situ hybridization. We found that expression of apoc1 and apoeb by microglia were differentially regulated by LXR/RXR and PPAR/RXR modulating compounds, respectively, during development. Our results also suggest RXR receptors could be involved in endogenous induction of apoc1 expression by microglia. Collectively, our work supports the use of zebrafish to better understand regulation and function of these apolipoproteins in the CNS.


Asunto(s)
Microglía , Pez Cebra , Animales , Apolipoproteínas/genética , Apolipoproteínas/farmacología , Receptores X Retinoide/genética , Receptores X Retinoide/farmacología , Retinoides/farmacología , Pez Cebra/genética
9.
Exp Eye Res ; 212: 108789, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34653519

RESUMEN

Adult zebrafish are capable of functional retinal regeneration following damage. A goal of vision science is to stimulate or permit a similar process in mammals to treat human retinal disease and trauma. Ideally such a process would reconstitute the stereotyped, two-dimensional topographic patterns and regional specializations of specific cell types, functionally important for representation of the visual field. An example in humans is the cone-rich fovea, essential for high-acuity color vision. Stereotyped, global topographic patterns of specific retinal cell types are also found in zebrafish, particularly for cone types expressing the tandemly-replicated lws (long wavelength-sensitive) and rh2 (middle wavelength-sensitive) opsins. Here we examine whether regionally specialized patterns of LWS1 and LWS2 cones are restored in regenerated retinas in zebrafish. Adult transgenic zebrafish carrying fluorescent reporters for lws1 and lws2 were subjected to retinal lesions that destroy all neurons but spare glia, via intraocular injection of the neurotoxin ouabain. Regenerated and contralateral control retinas were mounted whole or sectioned, and imaged. Overall spatial patterns of lws1 vs. lws2 opsin-expressing cones in regenerated retinas were remarkably similar to those of control retinas, with LWS1 cones in ventral/peripheral regions, and LWS2 cones in dorsal/central regions. However, LWS2 cones occupied a smaller fraction of regenerated retina, and several cones co-expressed the lws1 and lws2 reporters in regenerated retinas. Local patterns of regenerated LWS1 cones showed modest reductions in regularity. These results suggest that some of the regional patterning information, or the source of such signals, for LWS cone subtypes may be retained by undamaged cell types (Müller glia or RPE) and re-deployed during regeneration.


Asunto(s)
Regeneración/fisiología , Retina/fisiología , Animales , Animales Modificados Genéticamente , Modelos Animales , Retina/citología , Pez Cebra
10.
BMC Genomics ; 21(1): 870, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287696

RESUMEN

BACKGROUND: Unlike mammals, zebrafish have a remarkable capacity to regenerate a variety of tissues, including central nervous system tissue. The function of macrophages in tissue regeneration is of great interest, as macrophages respond and participate in the landscape of events that occur following tissue injury in all vertebrate species examined. Understanding macrophage populations in regenerating tissue (such as in zebrafish) may inform strategies that aim to regenerate tissue in humans. We recently published an RNA-seq experiment that identified genes enriched in microglia/macrophages in regenerating zebrafish retinas. Interestingly, a small number of transcripts differentially expressed by retinal microglia/macrophages during retinal regeneration did not have predicted orthologs in human or mouse. We reasoned that at least some of these genes could be functionally important for tissue regeneration, but most of these genes have not been studied experimentally and their functions are largely unknown. To reveal their possible functions, we performed a variety of bioinformatic analyses aimed at identifying the presence of functional protein domains as well as orthologous relationships to other species. RESULTS: Our analyses identified putative functional domains in predicted proteins for a number of selected genes. For example, we confidently predict kinase function for one gene, cytokine/chemokine function for another, and carbohydrate enzymatic function for a third. Predicted orthologs were identified for some, but not all, genes in species with described regenerative capacity, and functional domains were consistent with identified orthologs. Comparison to other published gene expression datasets suggest that at least some of these genes could be important in regenerative responses in zebrafish and not necessarily in response to microbial infection. CONCLUSIONS: This work reveals previously undescribed putative function of several genes implicated in regulating tissue regeneration. This will inform future work to experimentally determine the function of these genes in vivo, and how these genes may be involved in microglia/macrophage roles in tissue regeneration.


Asunto(s)
Microglía , Pez Cebra , Animales , Biología Computacional , Ratones , Retina , Pez Cebra/genética , Proteínas de Pez Cebra
11.
Dev Dyn ; 249(6): 723-740, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32072708

RESUMEN

BACKGROUND: Microglia colonize the developing vertebrate central nervous system coincident with the detection of developmental apoptosis. Our understanding of apoptosis in intact tissue in relation to microglial clearance of dying cells is largely based on fixed samples, which is limiting given that microglia are highly motile and mobile phagocytes. Here, we used a system of microglial depletion and in vivo real-time imaging in zebrafish to directly address microglial phagocytosis of apoptotic cells during normal retinal development, the relative timing of phagocytosis in relation to apoptotic progression, and the contribution of P2RY12 signaling to this process. RESULTS: The depletion of microglia resulted in accumulation of numerous apoptotic cells in the retina. Real-time imaging revealed precise timing of microglial engulfment with the progression of apoptosis, and dynamic movement and displacement of engulfed apoptotic cells. Inhibition of P2RY12 signaling delayed microglial clearance of apoptotic cells. CONCLUSIONS: Microglial engulfment of dying cells is coincident with apoptotic progression and requires P2RY12 signaling, indicating that microglial P2RY12 signaling is shared between development and injury response. Our work provides important in vivo insight into the dynamics of apoptotic cell clearance in the developing vertebrate retina and provides a basis to understand microglial phagocytic behavior in health and disease.


Asunto(s)
Microglía/citología , Microglía/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Retina/citología , Retina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Metronidazol/farmacología , Microglía/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Fagocitosis/fisiología , Receptores Purinérgicos P2Y12/genética , Retina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
12.
Proc Natl Acad Sci U S A ; 116(34): 16882-16891, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31383755

RESUMEN

Vertebrate color vision requires spectrally selective opsin-based pigments, expressed in distinct cone photoreceptor populations. In primates and in fish, spectrally divergent opsin genes may reside in head-to-tail tandem arrays. Mechanisms underlying differential expression from such arrays have not been fully elucidated. Regulation of human red (LWS) vs. green (MWS) opsins is considered a stochastic event, whereby upstream enhancers associate randomly with promoters of the proximal or distal gene, and one of these associations becomes permanent. We demonstrate that, distinct from this stochastic model, the endocrine signal thyroid hormone (TH) regulates differential expression of the orthologous zebrafish lws1/lws2 array, and of the tandemly quadruplicated rh2-1/rh2-2/rh2-3/rh2-4 array. TH treatment caused dramatic, dose-dependent increases in abundance of lws1, the proximal member of the lws array, and reduced lws2 Fluorescent lws reporters permitted direct visualization of individual cones switching expression from lws2 to lws1 Athyroidism increased lws2 and reduced lws1, except within a small ventral domain of lws1 that was likely sustained by retinoic acid signaling. Changes in lws abundance and distribution in athyroid zebrafish were rescued by TH, demonstrating plasticity of cone phenotype in response to this signal. TH manipulations also regulated the rh2 array, with athyroidism reducing abundance of distal members. Interestingly, the opsins encoded by the proximal lws gene and distal rh2 genes are sensitive to longer wavelengths than other members of their respective arrays; therefore, endogenous TH acts upon each opsin array to shift overall spectral sensitivity toward longer wavelengths, underlying coordinated changes in visual system function during development and growth.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Percepción de Color/fisiología , Opsinas de Bastones/biosíntesis , Hormonas Tiroideas/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/genética , Regulación de la Expresión Génica/fisiología , Humanos , Opsinas de Bastones/genética , Hormonas Tiroideas/genética , Pez Cebra/genética
13.
Front Cell Dev Biol ; 7: 95, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31245369

RESUMEN

We previously reported strikingly normal morphologies and functional connectivities of regenerated retinal bipolar neurons (BPs) in zebrafish retinas sampled 60 days after a ouabain-mediated lesion of inner retinal neurons (60 DPI) (McGinn et al., 2018). Here we report early steps in the birth of BPs and formation of their dendritic trees and axonal arbors during regeneration. Adult zebrafish were subjected to ouabain-mediated lesion that destroys inner retinal neurons but spares photoreceptors and Müller glia, and were sampled at 13, 17, and 21 DPI, a timeframe over which plexiform layers reemerge. We show that this timeframe corresponds to reemergence of two populations of BPs (PKCα+ and nyx::mYFP+). Sequential BrdU, EdU incorporation reveals that similar fractions of PKCα+ BPs and HuC/D+ amacrine/ganglion cells are regenerated concurrently, suggesting that the sequence of neuronal production during retinal regeneration does not strictly match that observed during embryonic development. Further, accumulation of regenerated BPs appears protracted, at least through 21 DPI. The existence of isolated, nyx::mYFP+ BPs allowed examination of cytological detail through confocal microscopy, image tracing, morphometric analyses, identification of cone synaptic contacts, and rendering/visualization. Apically-projecting neurites (=dendrites) of regenerated BPs sampled at 13, 17, and 21 DPI are either truncated, or display smaller dendritic trees when compared to controls. In cases where BP dendrites reach the outer plexiform layer (OPL), numbers of dendritic tips are similar to those of controls at all sampling times. Further, by 13-17 DPI, BPs with dendritic tips reaching the outer nuclear layer (ONL) show patterns of photoreceptor connections that are statistically indistinguishable from controls, while those sampled at 21 DPI slightly favor contacts with double cone synaptic terminals over those of blue-sensitive cones. These findings suggest that once regenerated BP dendrites reach the OPL, normal photoreceptor connectomes are established, albeit with some plasticity. Through 17 DPI, some basally-projecting neurites (=axons) of regenerated nyx::mYFP+ BPs traverse long distances, branch into inappropriate layers, or appear to abruptly terminate. These findings suggest that, after a tissue-disrupting lesion, regeneration of inner retinal neurons is a dynamic process that includes ongoing genesis of new neurons and changes in BP morphology.

14.
Sci Rep ; 9(1): 4768, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886241

RESUMEN

Zebrafish have the remarkable capacity to regenerate retinal neurons following a variety of damage paradigms. Following initial tissue insult and a period of cell death, a proliferative phase ensues that generates neuronal progenitors, which ultimately regenerate damaged neurons. Recent work has revealed that Müller glia are the source of regenerated neurons in zebrafish. However, the roles of another important class of glia present in the retina, microglia, during this regenerative phase remain elusive. Here, we examine retinal tissue and perform QuantSeq. 3'mRNA sequencing/transcriptome analysis to reveal localization and putative functions, respectively, of mpeg1 expressing cells (microglia/macrophages) during Müller glia-mediated regeneration, corresponding to a time of progenitor proliferation and production of new neurons. Our results indicate that in this regenerative state, mpeg1-expressing cells are located in regions containing regenerative Müller glia and are likely engaged in active vesicle trafficking. Further, mpeg1+ cells congregate at and around the optic nerve head. Our transcriptome analysis reveals several novel genes not previously described in microglia. This dataset represents the first report, to our knowledge, to use RNA sequencing to probe the microglial transcriptome in such context, and therefore provides a resource towards understanding microglia/macrophage function during successful retinal (and central nervous tissue) regeneration.


Asunto(s)
Células Ependimogliales/citología , Microglía/citología , Regeneración Nerviosa/fisiología , Células-Madre Neurales/citología , Neuronas Retinianas/citología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/fisiología , Proliferación Celular , Perfilación de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Retina/citología , Neuronas Retinianas/fisiología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
15.
Exp Eye Res ; 177: 130-144, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30096325

RESUMEN

This paper describes experimental procedures for the dissociation of retinal cells of the zebrafish (Danio rerio) for subsequent fluorescence-activated cell sorting (FACS) and gene expression studies. Methods for dissociation of zebrafish retinas followed by FACS and RNA isolation were optimized. This methodology was applied to isolate pure sorted samples of rods, long wavelength-sensitive (LWS) cones, medium wavelength-sensitive (MWS; RH2-2) cones, short wavelength-sensitive (SWS2) cones, and UV-sensitive (SWS1) cones from retinas obtained at selective life-history stages of the zebrafish, and for some of these photoreceptors, following retinal regeneration. We also successfully separated lws1-expressing and lws2-expressing LWS cones from fish of a transgenic line in which lws1 is reported with green fluorescence protein (GFP) and lws2 is reported with red fluorescence protein (RFP). Microglia/macrophages were successfully sorted from regenerating retinas (7 days after a cytotoxic lesion) of a transgenic line in which these immune cells express GFP. Electropherograms verified downstream isolation of high-quality RNA from sorted samples. Examples of post-sorting analysis, as well as results of qRT-PCR studies, validated the purity of sorted populations. For example, qRT-PCR samples derived from isolated Rh2-2 cones contained detectable rh2-2 (opn1mw2) opsin transcripts, but lws opsin transcripts (lws1/opn1lw1, lws2/opn1lw2) were not detected, suggesting that the procedure likely separated double cone pairs. Through this method, pure, sorted cell samples can provide RNA that is reliable for downstream gene expression analyses, such as qRT-PCR and RNA-seq, which may reveal molecular signatures of photoreceptors and microglia for comparative transcriptomics studies.


Asunto(s)
Separación Celular/métodos , Macrófagos , Microglía , Retina/citología , Células Fotorreceptoras Retinianas Conos , Células Fotorreceptoras Retinianas Bastones , Animales , Citometría de Flujo/métodos , Perfilación de la Expresión Génica , Reacción en Cadena de la Polimerasa , Pez Cebra/embriología
16.
J Neuroinflammation ; 15(1): 163, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29804544

RESUMEN

BACKGROUND: In contrast to mammals, zebrafish have the capacity to regenerate retinal neurons following a variety of injuries. Two types of glial cells, Müller glia (MG) and microglia, are known to exist in the zebrafish retina. Recent work has shown that MG give rise to regenerated retinal neurons, but the role of resident microglia, and the innate immune system more generally, during retinal regeneration is not well defined. Specifically, characteristics of the immune system and microglia following substantial neuron death and a successful regenerative response have not been documented. METHODS: The neurotoxin ouabain was used to induce a substantial retinal lesion of the inner retina in zebrafish. This lesion results in a regenerative response that largely restores retinal architecture, neuronal morphologies, and connectivities, as well as recovery of visual function. We analyzed cryosections from damaged eyes following immunofluorescence and H&E staining to characterize the initial immune response to the lesion. Whole retinas were analyzed by confocal microscopy to characterize microglia morphology and distribution. Statistical analysis was performed using a two-tailed Student's t test comparing damaged to control samples. RESULTS: We find evidence of early leukocyte infiltration to the retina in response to ouabain injection followed by a period of immune cell proliferation that likely includes both resident microglia and substantial numbers of proliferating, extra-retinally derived macrophages, leading to rapid accumulation upon retinal damage. Following immune cell proliferation, Müller glia re-enter the cell cycle. In retinas that have regenerated the layers lost to the initial injury (histologically regenerated), microglia retain morphological features of activation, suggesting ongoing functions that are likely essential to restoration of retinal function. CONCLUSIONS: Collectively, these results indicate that microglia and the immune system are dynamic during a successful regenerative response in the retina. This study provides an important framework to probe inflammation in the initiation of, and functional roles of microglia during retinal regeneration.


Asunto(s)
Macrófagos/patología , Microglía/patología , Degeneración Nerviosa/patología , Regeneración/fisiología , Retina/patología , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/toxicidad , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Etiquetado Corte-Fin in Situ , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Degeneración Nerviosa/inducido químicamente , Infiltración Neutrófila/fisiología , Ouabaína/toxicidad , Proteína Quinasa C/metabolismo , Regeneración/genética , Retina/lesiones , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteína Fluorescente Roja
17.
J Neurosci ; 38(1): 120-136, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29133431

RESUMEN

Adult zebrafish (Danio rerio) are capable of regenerating retinal neurons that have been lost due to mechanical, chemical, or light damage. In the case of chemical damage, there is evidence that visually mediated behaviors are restored after regeneration, consistent with recovery of retinal function. However, the extent to which regenerated retinal neurons attain appropriate morphologies and circuitry after such tissue-disrupting lesions has not been investigated. Adult zebrafish of both sexes were subjected to intravitreal injections of ouabain, which destroys the inner retina. After retinal regeneration, cell-selective markers, confocal microscopy, morphometrics, and electrophysiology were used to examine dendritic and axonal morphologies, connectivities, and the diversities of each, as well as retinal function, for a subpopulation of regenerated bipolar neurons (BPs). Although regenerated BPs were reduced in numbers, BP dendritic spreads, dendritic tree morphologies, and cone-bipolar connectivity patterns were restored in regenerated retinas, suggesting that regenerated BPs recover accurate input pathways from surviving cone photoreceptors. Morphological measurements of bipolar axons found that numbers and types of stratifications were also restored; however, the thickness of the inner plexiform layer and one measure of axon branching were slightly reduced after regeneration, suggesting some minor differences in the recovery of output pathways to downstream partners. Furthermore, ERG traces from regenerated retinas displayed waveforms matching those of controls, but with reduced b-wave amplitudes. These results support the hypothesis that regenerated neurons of the adult zebrafish retina are capable of restoring complex morphologies and circuitry, suggesting that complex visual functions may also be restored.SIGNIFICANCE STATEMENT Adult zebrafish generate new retinal neurons after a tissue-disrupting lesion. Existing research does not address whether regenerated neurons of adults successfully reconnect with surrounding neurons and establish complex morphologies and functions. We report that, after a chemical lesion that ablates inner retinal neurons, regenerated retinal bipolar neurons (BPs), although reduced in numbers, reconnected to undamaged cone photoreceptors with correct wiring patterns. Regenerated BPs had complex morphologies similar to those within undamaged retina and a physiological measure of photoreceptor-BP connectivity, the ERG, was restored to a normal waveform. This new understanding of neural connectivity, morphology, and physiology suggests that complex functional processing is possible within regenerated adult retina and offers a system for the future study of synaptogenesis during adult retinal regeneration.


Asunto(s)
Dendritas/fisiología , Regeneración Nerviosa/fisiología , Vías Nerviosas/fisiología , Células Bipolares de la Retina/fisiología , Pez Cebra/fisiología , Animales , Axones/ultraestructura , Dendritas/ultraestructura , Electrorretinografía , Femenino , Inyecciones Intravítreas , Masculino , Ouabaína/toxicidad , Retina/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/fisiología
18.
PLoS Genet ; 11(8): e1005483, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26296154

RESUMEN

The signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. Here we elucidate the role of RA in differential regulation of the tandemly-duplicated long wavelength-sensitive (LWS) cone opsin genes. Zebrafish embryos were treated with RA from 48 hours post-fertilization (hpf) to 75 hpf, and RNA was isolated from eyes for microarray analysis. ~170 genes showed significantly altered expression, including several transcription factors and components of cellular signaling pathways. Of interest, the LWS1 opsin gene was strongly upregulated by RA. LWS1 is the upstream member of the tandemly duplicated LWS opsin array and is normally not expressed embryonically. Embryos treated with RA 48 hpf to 100 hpf or beyond showed significant reductions in LWS2-expressing cones in favor of LWS1-expressing cones. The LWS reporter line, LWS-PAC(H) provided evidence that individual LWS cones switched from LWS2 to LWS1 expression in response to RA. The RA signaling reporter line, RARE:YFP indicated that increased RA signaling in cones was associated with this opsin switch, and experimental reduction of RA signaling in larvae at the normal time of onset of LWS1 expression significantly inhibited LWS1 expression. A role for endogenous RA signaling in regulating differential expression of the LWS genes in postmitotic cones was further supported by the presence of an RA signaling domain in ventral retina of juvenile zebrafish that coincided with a ventral zone of LWS1 expression. This is the first evidence that an extracellular signal may regulate differential expression of opsin genes in a tandemly duplicated array.


Asunto(s)
Opsinas de los Conos/genética , Opsinas/genética , Células Fotorreceptoras Retinianas Conos/fisiología , Tretinoina/fisiología , Proteínas de Pez Cebra/genética , Animales , Diferenciación Celular , Opsinas de los Conos/metabolismo , Ojo/citología , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Opsinas/metabolismo , Transactivadores , Transcriptoma , Pez Cebra , Proteínas de Pez Cebra/metabolismo
19.
Science ; 346(6208): 1257998, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25342811

RESUMEN

Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, are too small, or occur too rapidly to see clearly with existing tools. We crafted ultrathin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at subsecond intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. The results provide a visceral reminder of the beauty and the complexity of living systems.


Asunto(s)
Caenorhabditis elegans/embriología , Drosophila melanogaster/embriología , Embrión no Mamífero/ultraestructura , Imagenología Tridimensional/métodos , Microscopía/métodos , Imagen Molecular/métodos , Animales , Comunicación Celular , Células Madre Embrionarias/ultraestructura , Ratones , Esferoides Celulares/ultraestructura
20.
PLoS One ; 9(9): e108188, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25244427

RESUMEN

Separase is a protease that promotes chromosome segregation at anaphase by cleaving cohesin. Several non-proteolytic functions of separase have been identified in other organisms. We created a transgenic C. elegans line that expresses protease-dead separase in embryos to further characterize separase function. We find that expression of protease-dead separase is dominant-negative in C. elegans embryos, not previously reported in other systems. The C. elegans embryo is an ideal system to study developmental processes in a genetically tractable system. However, a major limitation is the lack of an inducible gene expression system for the embryo. We have developed two methods that allow for the propagation of lines carrying dominant-negative transgenes and have applied them to characterize expression of protease-dead separase in embryos. Using these methods, we show that protease-dead separase causes embryo lethality, and that protease-dead separase cannot rescue separase mutants. These data suggest that protease-dead separase interferes with endogenous separase function, possibly by binding substrates and protecting them from cleavage.


Asunto(s)
Caenorhabditis elegans/embriología , Embrión no Mamífero/enzimología , Péptido Hidrolasas/metabolismo , Separasa/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Fluorescentes Verdes/genética , Separasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...