Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
eNeuro ; 8(3)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33811085

RESUMEN

Operant behavior procedures often rely on visual stimuli to cue the initiation or secession of a response, and to provide a means for discriminating between two or more simultaneously available responses. While primate and human studies typically use Liquid-Crystal Display (LCD) or Organic Light-Emitting Diode (OLED) monitors and touch screens, rodent studies use a variety of methods to present visual cues ranging from traditional incandescent light bulbs, single LEDs, and, more recently, touch screen monitors. Commercially available systems for visual stimulus presentation are costly, challenging to customize, and are typically closed source. We developed an open-source, highly-modifiable visual stimulus presentation platform that can be combined with a 3D-printed operant response device. The device uses an 8 × 8 matrix of LEDs, and can be expanded to control much larger LED matrices. Implementing the platform is low-cost (<$70 USD per device in the year 2020). Using the platform, we trained rats to make nosepoke responses and discriminate between two distinct visual cues in a location-independent manner. This visual stimulus presentation platform is a cost-effective way to implement complex visually-guided operant behavior, including the use of moving or dynamically changing visual stimuli.


Asunto(s)
Señales (Psicología) , Animales , Ratas
2.
eNeuro ; 6(5)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31416819

RESUMEN

Syringe pumps are a necessary piece of laboratory equipment that are used for fluid delivery in behavioral neuroscience laboratories. Many experiments provide rodents and primates with fluid rewards such as juice, water, or liquid sucrose. Current commercialized syringe pumps are not customizable and do not have the ability to deliver multiple volumes of fluid based on different inputs to the pump. Additionally, many syringe pumps are expensive and cannot be used in experiments with paired neurophysiological recordings due to electrical noise. We developed an open source syringe pump controller using commonly available parts. The controller adjusts the acceleration and speed of the motor to deliver three different volumes of fluid reward within one common time epoch. This syringe pump controller is cost effective and has been successfully implemented in rodent behavioral experiments with paired neurophysiological recordings in the rat frontal cortex while rats lick for different volumes of liquid sucrose rewards. Our syringe pump controller will enable new experiments to address the potential confound of temporal information in studies of reward signaling by fluid magnitude.


Asunto(s)
Conducta de Ingestión de Líquido/fisiología , Diseño de Equipo/instrumentación , Leche , Jeringas , Agua/administración & dosificación , Animales , Diseño de Equipo/métodos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...