Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(3): 566-577, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38126708

RESUMEN

Dynein motors exhibit catch bonding, where the unbinding rate of the motors from microtubule filaments decreases with increasing opposing load. The implications of this catch bond on the transport properties of dynein-driven cargo are yet to be fully understood. In this context, optical trapping assays constitute an important means of accurately measuring the forces generated by molecular motor proteins. We investigate, using theory and stochastic simulations, the transport properties of cargo transported by catch bonded dynein molecular motors - both singly and in teams - in a harmonic potential, which mimics the variable force experienced by cargo in an optical trap. We estimate the biologically relevant measures of first passage time - the time during which the cargo remains bound to the microtubule and detachment force - the force at which the cargo unbinds from the microtubule, using both two-dimensional and one-dimensional force balance frameworks. Our results suggest that even for cargo transported by a single motor, catch bonding may play a role depending on the force scale which marks the onset of the catch bond. By comparing with experimental measurements on single dynein-driven transport, we estimate realistic bounds of this catch bond force scale. Generically, catch bonding results in increased persistent motion, and can also generate non-monotonic behaviour of first passage times. For cargo transported by multiple motors, emergent collective effects due to catch bonding can result in non-trivial re-entrant phenomena wherein average first passage times and detachment forces exhibit non-monotonic behaviour as a function of the stall force and the motor velocity.

2.
Commun Biol ; 6(1): 1138, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973839

RESUMEN

Oncogenic pathways that drive cancer progression reflect both genetic changes and epigenetic regulation. Here we stratified primary tumors from each of 24 TCGA adult cancer types based on the gene expression patterns of epigenetic factors (epifactors). The tumors for five cancer types (ACC, KIRC, LGG, LIHC, and LUAD) separated into two robust clusters that were better than grade or epithelial-to-mesenchymal transition in predicting clinical outcomes. The majority of epifactors that drove the clustering were also individually prognostic. A pan-cancer machine learning model deploying epifactor expression data for these five cancer types successfully separated the patients into poor and better outcome groups. Single-cell analysis of adult and pediatric tumors revealed that expression patterns associated with poor or worse outcomes were present in individual cells within tumors. Our study provides an epigenetic map of cancer types and lays a foundation for discovering pan-cancer targetable epifactors.


Asunto(s)
Epigénesis Genética , Neoplasias , Adulto , Niño , Humanos , Neoplasias/genética , Análisis por Conglomerados , Transición Epitelial-Mesenquimal , Aprendizaje Automático
3.
Soft Matter ; 19(34): 6446-6457, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37606542

RESUMEN

We report a two-layer microfluidic device to study the combined effect of confinement and chemical gradient on the motility of wild-type E. coli. We track individual E. coli in 50 µm and 10 µm wide microchannels, with a channel height of 2 µm, to generate quasi-2D conditions. We find that contrary to expectations, bacterial trajectories are superdiffusive even in the absence of a chemical (glucose) gradient. The superdiffusive behaviour becomes more pronounced upon introducing a chemical gradient or strengthening the lateral confinement. Run length distributions for weak lateral confinement in the absence of chemical gradients follow an exponential distribution. Both confinement and chemoattraction induce deviations from this behaviour, with the run length distributions approaching a power-law form under these conditions. Both confinement and chemoattraction suppress large-angle tumbles as well. Our results suggest that wild-type E. coli modulates both its runs and tumbles in a similar manner under physical confinement and chemical gradient. Our findings have implications for understanding how bacteria modulate their motility behaviour in natural habitats.


Asunto(s)
Escherichia coli , Microfluídica , Escherichia coli/genética , Quimiotaxis , Difusión , Glucosa
4.
Nat Commun ; 14(1): 4108, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433821

RESUMEN

Simulating chromatin is crucial for predicting genome organization and dynamics. Although coarse-grained bead-spring polymer models are commonly used to describe chromatin, the relevant bead dimensions, elastic properties, and the nature of inter-bead potentials are unknown. Using nucleosome-resolution contact probability (Micro-C) data, we systematically coarse-grain chromatin and predict quantities essential for polymer representation of chromatin. We compute size distributions of chromatin beads for different coarse-graining scales, quantify fluctuations and distributions of bond lengths between neighboring regions, and derive effective spring constant values. Unlike the prevalent notion, our findings argue that coarse-grained chromatin beads must be considered as soft particles that can overlap, and we derive an effective inter-bead soft potential and quantify an overlap parameter. We also compute angle distributions giving insights into intrinsic folding and local bendability of chromatin. While the nucleosome-linker DNA bond angle naturally emerges from our work, we show two populations of local structural states. The bead sizes, bond lengths, and bond angles show different mean behavior at Topologically Associating Domain (TAD) boundaries and TAD interiors. We integrate our findings into a coarse-grained polymer model and provide quantitative estimates of all model parameters, which can serve as a foundational basis for all future coarse-grained chromatin simulations.


Asunto(s)
Cromatina , Animales , Ratones , Células Madre Embrionarias de Ratones , Cromatina/química , Nucleosomas/química , Globinas alfa/química , Modelos Moleculares , Estructura Terciaria de Proteína , Genoma
5.
Integr Biol (Camb) ; 152023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37449740

RESUMEN

In an attempt to understand the role of dysregulated circadian rhythm in glioma, our recent findings highlighted the existence of a feed-forward loop between tumour metabolite lactate, pro-inflammatory cytokine IL-1ß and circadian CLOCK. To further elucidate the implication of this complex interplay, we developed a mathematical model that quantitatively describes this lactate dehydrogenase A (LDHA)-IL-1ß-CLOCK/BMAL1 circuit and predicts potential therapeutic targets. The model was calibrated on quantitative western blotting data in two glioma cell lines in response to either lactate inhibition or IL-1ß stimulation. The calibrated model described the experimental data well and most of the parameters were identifiable, thus the model was predictive. Sensitivity analysis identified IL-1ß and LDHA as potential intervention points. Mathematical models described here can be useful to understand the complex interrelationship between metabolism, inflammation and circadian rhythm, and in designing effective therapeutic strategies. Our findings underscore the importance of including the circadian clock when developing pharmacological approaches that target aberrant tumour metabolism and inflammation. Insight box  The complex interplay of metabolism-inflammation-circadian rhythm in tumours is not well understood. Our recent findings provided evidence of a feed-forward loop between tumour metabolite lactate, pro-inflammatory cytokine IL-1ß and circadian CLOCK/BMAL1 in glioma. To elucidate the implication of this complex interplay, we developed a mathematical model that quantitatively describes this LDHA-IL-1ß-CLOCK/BMAL1 circuit and integrates experimental data to predict potential therapeutic targets. The study employed a multi-start optimization strategy and profile likelihood estimations for parameter estimation and assessing identifiability. The simulations are in reasonable agreement with the experimental data. Sensitivity analysis found LDHA and IL-1ß as potential therapeutic points. Mathematical models described here can provide insights to understand the complex interrelationship between metabolism, inflammation and circadian rhythm, and in identifying effective therapeutic targets.


Asunto(s)
Factores de Transcripción ARNTL , Glioma , Humanos , Factores de Transcripción ARNTL/metabolismo , Ácido Láctico , Inflamación/metabolismo , Citocinas
6.
FEBS J ; 290(14): 3533-3538, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37184984

RESUMEN

Quiescence, reversible cell cycle arrest, is essential for survival during nutrient limitations and the execution of precise developmental patterns. In yeast, entry into quiescence is associated with a loss of histone acetylation as the chromatin becomes tightly condensed. In this issue, Small and Osley performed an unbiased screen of mutations in histone H3 and H4 amino acids in budding yeast and identified histone residues that are critical for quiescence and chronological lifespan. The results indicate that multiple histone amino acids, likely affecting nucleosome structure and a wide range of chromatin-associated processes, can promote or inhibit quiescence entry. Many of the same histone amino acids are also critical regulators of chronological lifespan.


Asunto(s)
Histonas , Proteínas de Saccharomyces cerevisiae , Histonas/metabolismo , Tiempo de Pantalla , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Saccharomyces cerevisiae/metabolismo , Mutación , Aminoácidos/metabolismo , Acetilación
7.
Soft Matter ; 19(1): 153-163, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36484149

RESUMEN

Collapsed conformations of chromatin have been long suspected of being mediated by interactions with multivalent binding proteins, which can bring together distant sections of the chromatin fiber. In this study, we use Langevin dynamics simulation of a coarse grained chromatin polymer to show that the role of binding proteins can be more nuanced than previously suspected. In particular, for chromatin polymer in confinement, entropic forces can drive reswelling of collapsed chromatin with increasing binder concentrations, and this reswelling transition happens at physiologically relevant binder concentrations. Both the extent of collapse, and also of reswelling depends on the strength of confinement. We also study the kinetics of collapse and reswelling and show that both processes occur in similar timescales. We characterise this reswelling of chromatin in biologically relevant regimes and discuss the non-trivial role of multivalent binding proteins in mediating the spatial organisation of the genome.


Asunto(s)
Proteínas Portadoras , Cromatina , Cromosomas/metabolismo , Entropía , Polímeros/metabolismo
8.
Biophys J ; 121(12): 2419-2435, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35591789

RESUMEN

Syncytial cells contain multiple nuclei and have local distribution and function of cellular components despite being synthesized in a common cytoplasm. The syncytial Drosophila blastoderm embryo shows reduced spread of organelle and plasma membrane-associated proteins between adjacent nucleo-cytoplasmic domains. Anchoring to the cytoarchitecture within a nucleo-cytoplasmic domain is likely to decrease the spread of molecules; however, its role in restricting this spread has not been assessed. In order to analyze the cellular mechanisms that regulate the rate of spread of plasma membrane-associated molecules in the syncytial Drosophila embryos, we express a pleckstrin homology (PH) domain in a localized manner at the anterior of the embryo by tagging it with the bicoid mRNA localization signal. Anteriorly expressed PH domain forms an exponential gradient in the anteroposterior axis with a longer length scale compared with Bicoid. Using a combination of experiments and theoretical modeling, we find that the characteristic distribution and length scale emerge due to plasma membrane sequestration and restriction within an energid. Loss of plasma membrane remodeling to form pseudocleavage furrows shows an enhanced spread of PH domain but not Bicoid. Modeling analysis suggests that the enhanced spread of the PH domain occurs due to the increased spread of the cytoplasmic population of the PH domain in pseudocleavage furrow mutants. Our analysis of cytoarchitecture interaction in regulating plasma membrane protein distribution and constraining its spread has implications on the mechanisms of spread of various molecules, such as morphogens in syncytial cells.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Membrana Celular/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Dominios Homólogos a Pleckstrina
9.
Front Cell Dev Biol ; 9: 739780, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778253

RESUMEN

Many of the cells in our bodies are quiescent, that is, temporarily not dividing. Under certain physiological conditions such as during tissue repair and maintenance, quiescent cells receive the appropriate stimulus and are induced to enter the cell cycle. The ability of cells to successfully transition into and out of a quiescent state is crucial for many biological processes including wound healing, stem cell maintenance, and immunological responses. Across species and tissues, transcriptional, epigenetic, and chromosomal changes associated with the transition between proliferation and quiescence have been analyzed, and some consistent changes associated with quiescence have been identified. Histone modifications have been shown to play a role in chromatin packing and accessibility, nucleosome mobility, gene expression, and chromosome arrangement. In this review, we critically evaluate the role of different histone marks in these processes during quiescence entry and exit. We consider different model systems for quiescence, each of the most frequently monitored candidate histone marks, and the role of their writers, erasers and readers. We highlight data that support these marks contributing to the changes observed with quiescence. We specifically ask whether there is a quiescence histone "code," a mechanism whereby the language encoded by specific combinations of histone marks is read and relayed downstream to modulate cell state and function. We conclude by highlighting emerging technologies that can be applied to gain greater insight into the role of a histone code for quiescence.

10.
Biophys J ; 120(18): 4129-4136, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34329628

RESUMEN

Generation of mechanical oscillations is ubiquitous to a wide variety of intracellular processes, ranging from activity of muscle fibers to oscillations of the mitotic spindle. The activity of motors plays a vital role in maintaining the integrity of the mitotic spindle structure and generating spontaneous oscillations. Although the structural features and properties of the individual motors are well characterized, their implications on the functional behavior of motor-filament complexes are more involved. We show that force-induced allosteric deformations in dynein, which result in catchbonding behavior, provide a generic mechanism to generate spontaneous oscillations in motor-cytoskeletal filament complexes. The resultant phase diagram of such motor-filament systems-characterized by force-induced allosteric deformations-exhibits bistability and sustained limit-cycle oscillations in biologically relevant regimes, such as for catchbonded dynein. The results reported here elucidate the central role of this mechanism in fashioning a distinctive stability behavior and oscillations in motor-filament complexes such as mitotic spindles.


Asunto(s)
Dineínas , Huso Acromático , Dineínas/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo
11.
NPJ Genom Med ; 5(1): 55, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311498

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a 5-year survival rate of <8%. Unsupervised clustering of 76 PDAC patients based on intron retention (IR) events resulted in two clusters of tumors (IR-1 and IR-2). While gene expression-based clusters are not predictive of patient outcome in this cohort, the clusters we developed based on intron retention were associated with differences in progression-free interval. IR levels are lower and clinical outcome is worse in IR-1 compared with IR-2. Oncogenes were significantly enriched in the set of 262 differentially retained introns between the two IR clusters. Higher IR levels in IR-2 correlate with higher gene expression, consistent with detention of intron-containing transcripts in the nucleus in IR-2. Out of 258 genes encoding RNA-binding proteins (RBP) that were differentially expressed between IR-1 and IR-2, the motifs for seven RBPs were significantly enriched in the 262-intron set, and the expression of 25 RBPs were highly correlated with retention levels of 139 introns. Network analysis suggested that retention of introns in IR-2 could result from disruption of an RBP protein-protein interaction network previously linked to efficient intron removal. Finally, IR-based clusters developed for the majority of the 20 cancer types surveyed had two clusters with asymmetrical distributions of IR events like PDAC, with one cluster containing mostly intron loss events. Taken together, our findings suggest IR may be an important biomarker for subclassifying tumors.

12.
Biophys J ; 119(11): 2316-2325, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33181117

RESUMEN

An important question in the context of the three-dimensional organization of chromosomes is the mechanism of formation of large loops between distant basepairs. Recent experiments suggest that the formation of loops might be mediated by loop extrusion factor proteins such as cohesin. Experiments on cohesin have shown that cohesins walk diffusively on the DNA and that nucleosomes act as obstacles to the diffusion, lowering the permeability and hence reducing the effective diffusion constant. An estimation of the times required to form the loops of typical sizes seen in Hi-C experiments using these low-effective-diffusion constants leads to times that are unphysically large. The puzzle then is the following: how does a cohesin molecule diffusing on the DNA backbone achieve speeds necessary to form the large loops seen in experiments? We propose a simple answer to this puzzle and show that although at low densities, nucleosomes act as barriers to cohesin diffusion, beyond a certain concentration they can reduce loop formation times because of a subtle interplay between the nucleosome size and the mean linker length. This effect is further enhanced on considering stochastic binding kinetics of nucleosomes on the DNA backbone and leads to predictions of lower loop formation times than might be expected from a naive obstacle picture of nucleosomes.


Asunto(s)
Cromatina , Nucleosomas , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona , Cohesinas
13.
Int J Dev Biol ; 64(4-5-6): 275-287, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32658989

RESUMEN

Drosophila embryogenesis begins with nuclear division in a common cytoplasm forming a syncytial cell. Morphogen gradient molecules spread across nucleo-cytoplasmic domains to pattern the body axis of the syncytial embryo. The diffusion of molecules across the syncytial nucleo-cytoplasmic domains is potentially constrained by association with the components of cellular architecture. However, the extent of restriction has not been examined. Here we use photoactivation (PA) to generate a source of cytoplasmic or cytoskeletal molecules in order to monitor the kinetics of their spread in the syncytial Drosophila embryo. Photoactivated PA-GFP and PA-GFP-Tubulin generated within a fixed anterior area diffused along the antero-posterior axis. These molecules were enriched in the cortical cytoplasm above the yolk-filled center, suggesting that the cortical cytoplasm is phase separated from the yolk-filled center. The length scales of diffusion were extracted using exponential fits under steady state assumptions. PA-GFP spread a greater distance as compared to PA-GFP-Tubulin. Both molecules were more restricted when generated in the center of the embryo. The length scale of spread for PA-GFP-Tubulin increased in mutant embryos containing short plasma membrane furrows and a disrupted tubulin cytoskeleton. PA-GFP spread was unaffected by cyto-architecture perturbation. Taken together, these data show that PA-GFP-Tubulin spread is restricted by its incorporation in the microtubule network and intact plasma membrane furrows. This photoactivation based analysis of protein spread allows for interpretation of the dependence of gradient formation on syncytial cyto-architecture.


Asunto(s)
Blastodermo/metabolismo , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Células Gigantes/metabolismo , Tubulina (Proteína)/metabolismo , Algoritmos , Animales , Animales Modificados Genéticamente , Blastodermo/citología , Blastodermo/embriología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Células Gigantes/citología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Modelos Teóricos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tubulina (Proteína)/genética
14.
Biophys J ; 118(12): 3041-3050, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32492372

RESUMEN

We propose a simple model for chromatin organization based on the interaction of the chromatin fibers with lamin proteins along the nuclear membrane. Lamin proteins are known to be a major factor that influences chromatin organization and hence gene expression in the cells. We provide a quantitative understanding of lamin-associated chromatin organization in a crowded macromolecular environment by systematically varying the heteropolymer segment distribution and the strength of the lamin-chromatin attractive interaction. Our minimal polymer model reproduces the formation of lamin-associated-domains and provides an in silico tool for quantifying domain length distributions for different distributions of heteropolymer segments. We show that a Gaussian distribution of heteropolymer segments, coupled with strong lamin-chromatin interactions, can qualitatively reproduce observed length distributions of lamin-associated-domains. Further, lamin-mediated interaction can enhance the formation of chromosome territories as well as the organization of chromatin into tightly packed heterochromatin and the loosely packed gene-rich euchromatin regions.


Asunto(s)
Cromatina , Lamina Tipo A , Cromatina/genética , Eucromatina , Heterocromatina , Lamina Tipo A/genética , Membrana Nuclear
16.
Trends Cell Biol ; 30(1): 74-85, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31810769

RESUMEN

Cell migration is essential for normal development, neural patterning, pathogen eradication, and cancer metastasis. Pre-mRNA processing events such as alternative splicing and alternative polyadenylation result in greater transcript and protein diversity as well as function and activity. A critical role for alternative pre-mRNA processing in cell migration has emerged in axon outgrowth during neuronal development, immune cell migration, and cancer metastasis. These findings suggest that migratory signals result in expression changes of post-translational modifications of splicing or polyadenylation factors, leading to splicing events that generate promigratory isoforms. We summarize this recent progress and suggest emerging technologies that may facilitate a deeper understanding of the role of alternative splicing and polyadenylation in cell migration.


Asunto(s)
Empalme Alternativo/genética , Movimiento Celular/genética , Animales , Humanos , Modelos Biológicos , Poliadenilación/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Postranscripcional del ARN/genética
17.
Genome Biol ; 19(1): 176, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30360761

RESUMEN

BACKGROUND: In response to a wound, fibroblasts are activated to migrate toward the wound, to proliferate and to contribute to the wound healing process. We hypothesize that changes in pre-mRNA processing occurring as fibroblasts enter the proliferative cell cycle are also important for promoting their migration. RESULTS: RNA sequencing of fibroblasts induced into quiescence by contact inhibition reveals downregulation of genes involved in mRNA processing, including splicing and cleavage and polyadenylation factors. These genes also show differential exon use, especially increased intron retention in quiescent fibroblasts compared to proliferating fibroblasts. Mapping the 3' ends of transcripts reveals that longer transcripts from distal polyadenylation sites are more prevalent in quiescent fibroblasts and are associated with increased expression and transcript stabilization based on genome-wide transcript decay analysis. Analysis of dermal excisional wounds in mice reveals that proliferating cells adjacent to wounds express higher levels of cleavage and polyadenylation factors than quiescent fibroblasts in unwounded skin. Quiescent fibroblasts contain reduced levels of the cleavage and polyadenylation factor CstF-64. CstF-64 knockdown recapitulates changes in isoform selection and gene expression associated with quiescence, and results in slower migration. CONCLUSIONS: Our findings support cleavage and polyadenylation factors as a link between cellular proliferation state and migration.


Asunto(s)
Ciclo Celular , Movimiento Celular , Fibroblastos/fisiología , Poli A/metabolismo , Poliadenilación , Piel/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Células Cultivadas , Fibroblastos/citología , Humanos , Poli A/genética , Empalme del ARN , Piel/citología , Factores de Escisión y Poliadenilación de ARNm/genética
18.
Sci Rep ; 8(1): 11807, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087365

RESUMEN

Triple-negative breast cancers (TNBC) lack estrogen and progesterone receptors and HER2 amplification, and are resistant to therapies that target these receptors. Tumors from TNBC patients are heterogeneous based on genetic variations, tumor histology, and clinical outcomes. We used high throughput genomic data for TNBC patients (n = 137) from TCGA to characterize inter-tumor heterogeneity. Similarity network fusion (SNF)-based integrative clustering combining gene expression, miRNA expression, and copy number variation, revealed three distinct patient clusters. Integrating multiple types of data resulted in more distinct clusters than analyses with a single datatype. Whereas most TNBCs are classified by PAM50 as basal subtype, one of the clusters was enriched in the non-basal PAM50 subtypes, exhibited more aggressive clinical features and had a distinctive signature of oncogenic mutations, miRNAs and expressed genes. Our analyses provide a new classification scheme for TNBC based on multiple omics datasets and provide insight into molecular features that underlie TNBC heterogeneity.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Regulación Neoplásica de la Expresión Génica , MicroARNs , ARN Neoplásico , Receptor ErbB-2 , Neoplasias de la Mama Triple Negativas , Adulto , Anciano , Femenino , Humanos , MicroARNs/biosíntesis , MicroARNs/genética , Persona de Mediana Edad , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Receptor ErbB-2/biosíntesis , Receptor ErbB-2/genética , Neoplasias de la Mama Triple Negativas/clasificación , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
19.
Mol Biol Cell ; 29(15): 1825-1838, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29874120

RESUMEN

Cell migration is a highly conserved process involving cytoskeletal reorganization and restructuring of the surrounding extracellular matrix. Although there are many studies describing mechanisms underlying cell motility, little has been reported about the contribution of alternative isoform use toward cell migration. Here, we investigated whether alternative isoform use can affect cell migration focusing on reversion-inducing-cysteine-rich protein with Kazal motifs (RECK), an established inhibitor of cell migration. We found that a shorter isoform of RECK is more highly expressed in proliferating fibroblasts, in TGF-ß-treated fibroblasts, and in tumors compared with differentiated tissue. Knockdown of this short RECK isoform reduces fibroblast migration through Matrigel. Thus, this short isoform of RECK generated by a combination of alternative splicing and alternative polyadenylation plays an opposing role to the canonical RECK isoform, as knockdown of canonical RECK results in faster cell migration through Matrigel. We show that the short RECK protein competes with matrix metalloprotease 9 (MMP9) for binding to the Kazal motifs of canonical RECK, thus liberating MMP9 from an inactivating interaction with canonical RECK. Our studies provide a new paradigm and a detailed mechanism for how alternative isoform use can regulate cell migration by producing two proteins with opposing effects from the same genetic locus.


Asunto(s)
Movimiento Celular , Proteínas Ligadas a GPI/metabolismo , Secuencias de Aminoácidos , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteínas Ligadas a GPI/química , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Vías Secretoras/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología
20.
Sci Rep ; 8(1): 7358, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743499

RESUMEN

Waddington's epigenetic landscape provides a phenomenological understanding of the cell differentiation pathways from the pluripotent to mature lineage-committed cell lines. In light of recent successes in the reverse programming process there has been significant interest in quantifying the underlying landscape picture through the mathematics of gene regulatory networks. We investigate the role of time delays arising from multi-step chemical reactions and epigenetic rearrangement on the cell differentiation landscape for a realistic two-gene regulatory network, consisting of self-promoting and mutually inhibiting genes. Our work provides the first theoretical basis of the transdifferentiation process in the presence of delays, where one differentiated cell type can transition to another directly without passing through the undifferentiated state. Additionally, the interplay of time-delayed feedback and a time dependent chemical drive leads to long-lived oscillatory states in appropriate parameter regimes. This work emphasizes the important role played by time-delayed feedback loops in gene regulatory circuits and provides a framework for the characterization of epigenetic landscapes.


Asunto(s)
Transdiferenciación Celular , Reprogramación Celular , Epigénesis Genética , Modelos Biológicos , Retroalimentación Fisiológica , Redes Reguladoras de Genes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...