Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(42): e2404485121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39382998

RESUMEN

Tumor-targeted therapies have often been inefficient due to the lack of concomitant control over the tumor microenvironment. Using an immunocompetent autologous breast cancer model, we investigated a MAtrix REgulating MOtif (MAREMO)-mimicking peptide, which inhibits the protumorigenic extracellular matrix (ECM) molecule tenascin-C that activates several cancer hallmarks. In cultured cells, targeting the MAREMO blocks tenascin-C signaling involved in cell adhesion and immune-suppression by inhibiting tenascin-C interactions with fibronectin, TGFß, CXCL12, and others, thereby blocking downstream events. Using RNASequencing and various genetic, molecular, in situ, and in vivo assays, we demonstrate that the MAREMO peptide similarly blocks multiple tenascin-C functions in vivo. This includes releasing tumor-infiltrating leukocytes, including CD8+ T cells, from the stroma. The MAREMO peptide also triggers interferon signaling, restoring antitumor immunity, contributing to tumor growth inhibition and reduced dissemination. The MAREMO peptide targets tumor cells directly by promoting growth suppression and inhibiting phenotypic plasticity, subsequently enhancing responsiveness to the endogenous death inducer tumor necrosis factor-related apoptosis-inducing ligand, as shown by a loss-of-function approach. Moreover, the MAREMO peptide largely subdues the tumor bed by depleting fibroblasts, repressing tenascin-C and other ECM molecules, and restoring the function of the few remaining blood vessels. In conclusion, targeting tenascin-C with a MAREMO peptide represents a powerful anticancer strategy with a broad inhibition of several cancer hallmarks.


Asunto(s)
Tenascina , Microambiente Tumoral , Tenascina/metabolismo , Humanos , Animales , Ratones , Femenino , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Matriz Extracelular/metabolismo , Transducción de Señal/efectos de los fármacos , Péptidos/farmacología , Quimiocina CXCL12/metabolismo , Fibronectinas/metabolismo
2.
Mol Cell ; 82(11): 2132-2147.e6, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35447083

RESUMEN

Mouse pericentromeric DNA is composed of tandem major satellite repeats, which are heterochromatinized and cluster together to form chromocenters. These clusters are refractory to DNA repair through homologous recombination (HR). The mechanisms by which pericentromeric heterochromatin imposes a barrier on HR and the implications of repeat clustering are unknown. Here, we compare the spatial recruitment of HR factors upon double-stranded DNA breaks (DSBs) induced in human and mouse pericentromeric heterochromatin, which differ in their capacity to form clusters. We show that while DSBs increase the accessibility of human pericentromeric heterochromatin by disrupting HP1α dimerization, mouse pericentromeric heterochromatin repeat clustering imposes a physical barrier that requires many layers of de-compaction to be accessed. Our results support a model in which the 3D organization of heterochromatin dictates the spatial activation of DNA repair pathways and is key to preventing the activation of HR within clustered repeats and the onset of chromosomal translocations.


Asunto(s)
Heterocromatina , Translocación Genética , Animales , Análisis por Conglomerados , Roturas del ADN de Doble Cadena , Heterocromatina/genética , Recombinación Homóloga/genética , Ratones
3.
Methods Mol Biol ; 2153: 439-445, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32840797

RESUMEN

CRISPR/Cas9 technology can be used to investigate how double-strand breaks (DSBs) occurring in constitutive heterochromatin are getting repaired. This technology can be used to induce specific breaks on mouse pericentromeric heterochromatin, by using a guide RNA specific for the major satellite repeats and co-expressing it with Cas9. Those clean DSBs can be visualized later by confocal microscopy. More specifically, immunofluorescence can be used to visualize the main factors of each DSB repair pathway and quantify their percentage and pattern of recruitment at the heterochromatic region.


Asunto(s)
Sistemas CRISPR-Cas , Roturas del ADN de Doble Cadena , Heterocromatina/genética , Animales , Reparación del ADN , Técnica del Anticuerpo Fluorescente , Ratones , Células 3T3 NIH
4.
Curr Opin Cell Biol ; 64: 58-66, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32220808

RESUMEN

Genomic instability can be life-threatening. The fine balance between error-free and mutagenic DNA repair pathways is essential for maintaining genome integrity. Recent advances in DNA double-strand break induction and detection techniques have allowed the investigation of DNA damage and repair in the context of the highly complex nuclear structure. These studies have revealed that the 3D genome folding, nuclear compartmentalization and cytoskeletal components control the spatial distribution of DNA lesions within the nuclear space and dictate their mode of repair.


Asunto(s)
Núcleo Celular/genética , Genoma , Animales , Daño del ADN , Reparación del ADN/genética , Inestabilidad Genómica , Humanos , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...