Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15964, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987562

RESUMEN

Pathological proteins including tau are produced in neurons and released into interstitial fluid (ISF) in a neural activity-dependent manner during wakefulness. Pathological proteins in ISF can be removed from the brain via the glymphatic pathway during nighttime. Thus, in individuals with Alzheimer's disease (AD) that have dysregulated sleep/wake rhythm, application of orexin receptor 2 (OX2R) agonists during daytime could recover the efflux of pathological proteins to ISF and indirectly promote the glymphatic pathway by improving the quality of nighttime sleep after proper daytime arousal, resulting in increased removal of these proteins from the brain. We investigated this hypothesis using OX-201, a novel OX2R-selective agonist with a 50% effective concentration of 8.0 nM. Diurnal rhythm of tau release into hippocampal ISF correlated well with neuronal activity and wakefulness in wild-type mice. In both wild-type and human P301S tau transgenic mice, OX-201 induced wakefulness and promoted tau release into hippocampal ISF. Human P301S tau transgenic mice, tested under our conditions, showed longer wakefulness time, which differs from individuals with AD. OX-201 treatment over 2 months did not alter hippocampal tau levels. Although further studies are required, at a minimum OX2R agonists may not exacerbate tau accumulation in individuals with tauopathy, including AD.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Ratones Transgénicos , Receptores de Orexina , Proteínas tau , Animales , Proteínas tau/metabolismo , Ratones , Receptores de Orexina/metabolismo , Receptores de Orexina/agonistas , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Vigilia/efectos de los fármacos , Masculino , Líquido Extracelular/metabolismo , Líquido Extracelular/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos
2.
Sci Rep ; 12(1): 8473, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589803

RESUMEN

Orexin, a neuropeptide, performs various physiological functions, including the regulation of emotion, feeding, metabolism, respiration, and sleep/wakefulness, by activating the orexin 1 receptor and orexin 2 receptor (OX2R). Owing to the pivotal role of OX2R in wakefulness and other biological functions, OX2R agonists are being developed. A detailed understanding of OX2R protein distribution is essential for determining the mechanisms of action of OX2R agonists; however, this has been hindered by the lack of selective antibodies. In this study, we first confirmed the OX2R-selective binding of [3H]-EMPA in in vitro autoradiography studies, using brain slices from OX2R knockout mice and their wild-type littermates. Subsequently, OX2R protein distribution in rats was comprehensively assessed in 51 brain regions and 10 peripheral tissues using in vitro autoradiography with [3H]-EMPA. The widespread distribution of OX2R protein, including that in previously unrecognized regions of the retrosplenial cortex, was identified. In contrast, OX2R protein expression was negligible/very low in peripheral tissues, suggesting that orexin exerts OX2R-dependent physiological functions primarily through activation of the central nervous system. These findings will be useful for understanding the wide range of biological functions of OX2R and the application of OX2R agonists in various disorders.


Asunto(s)
Encéfalo , Roedores , Animales , Autorradiografía , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ratones , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Ratas , Roedores/metabolismo
3.
Brain Res ; 1423: 1-9, 2011 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-22000082

RESUMEN

Adiponectin can act in the brain to increase energy expenditure and reduce body weight by mechanisms not entirely understood. We found that adiponectin type 1 and type 2 receptors (AdipoR1 and AdipoR2) are expressed in warm sensitive neurons of the hypothalamic preoptic area (POA) which play a critical role in the regulation of core body temperature (CBT) and energy balance. Thus, we tested the ability of adiponectin to influence CBT in wild-type mice and in mice deficient for AdipoR1 or AdipoR2. Local injection of adiponectin into the POA induced prolonged elevation of core body temperature and decreased respiratory exchange ratio (RER) indicating that increased energy expenditure is associated with increased oxidation of fat over carbohydrates. In AdipoR1 deficient mice, the ability of adiponectin to raise CBT was significantly blunted and its ability to decrease RER was completely lost. In AdipoR2 deficient mice, adiponectin had only diminished hyperthermic effects but reduced RER similarly to wild type mice. These results indicate that adiponectin can contribute to energy homeostasis by regulating CBT by direct actions on AdipoR1 and R2 in the POA.


Asunto(s)
Adiponectina/farmacología , Temperatura Corporal/efectos de los fármacos , Área Preóptica/citología , Receptores de Adiponectina/metabolismo , Células Receptoras Sensoriales/fisiología , Análisis de Varianza , Animales , Calorimetría Indirecta , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Adiponectina/deficiencia , Células Receptoras Sensoriales/efectos de los fármacos , Telemetría , Sensación Térmica/efectos de los fármacos , Sensación Térmica/fisiología
4.
Diabetes ; 59(1): 43-50, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19846801

RESUMEN

OBJECTIVE: Temperature and nutrient homeostasis are two interdependent components of energy balance regulated by distinct sets of hypothalamic neurons. The objective is to examine the role of the metabolic signal insulin in the control of core body temperature (CBT). RESEARCH DESIGN AND METHODS: The effect of preoptic area administration of insulin on CBT in mice was measured by radiotelemetry and respiratory exchange ratio. In vivo 2-[(18)F]fluoro-2-deoxyglucose uptake into brown adipose tissue (BAT) was measured in rats after insulin treatment by positron emission tomography combined with X-ray computed tomography imaging. Insulin receptor-positive neurons were identified by retrograde tracing from the raphe pallidus. Insulin was locally applied on hypothalamic slices to determine the direct effects of insulin on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. RESULTS: Injection of insulin into the preoptic area of the hypothalamus induced a specific and dose-dependent elevation of CBT mediated by stimulation of BAT thermogenesis as shown by imaging and respiratory ratio measurements. Retrograde tracing indicates that insulin receptor-expressing warm-sensitive neurons activate BAT through projection via the raphe pallidus. Insulin applied on hypothalamic slices acted directly on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. The hyperthermic effects of insulin were blocked by pretreatment with antibodies to insulin or with a phosphatidylinositol 3-kinase inhibitor. CONCLUSIONS: Our findings demonstrate that insulin can directly modulate hypothalamic neurons that regulate thermogenesis and CBT and indicate that insulin plays an important role in coupling metabolism and thermoregulation at the level of anterior hypothalamus.


Asunto(s)
Temperatura Corporal/fisiología , Hipertermia Inducida/métodos , Insulina/farmacología , Neuronas/fisiología , Tejido Adiposo Pardo/fisiología , Animales , Temperatura Corporal/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Inyecciones , Insulina/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Área Preóptica/efectos de los fármacos , Área Preóptica/fisiología , Telemetría
5.
Neuropsychopharmacology ; 31(6): 1112-22, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16237391

RESUMEN

Regulation of neurotransmission via group-III metabotropic glutamate receptors (mGluR4, -6, -7, and -8) has recently been implicated in the pathophysiology of affective disorders, such as major depression and anxiety. For instance, mice with a targeted deletion of the gene for mGluR7 (mGluR7-/-) showed antidepressant and anxiolytic-like effects in a variety of stress-related paradigms, including the forced swim stress and the stress-induced hyperthermia tests. Deletion of mGluR7 reduces also amygdala- and hippocampus-dependent conditioned fear and aversion responses. Since the hypothalamic-pituitary-adrenal (HPA) axis regulates the stress response we investigate whether parameters of the HPA axis at the levels of selected mRNA transcripts and endocrine hormones are altered in mGluR7-deficient mice. Over all, mGluR7-/- mice showed only moderately lower serum levels of corticosterone and ACTH compared with mGluR7+/+ mice. More strikingly however, we found strong evidence for upregulated glucocorticoid receptor (GR)-dependent feedback suppression of the HPA axis in mice with mGluR7 deficiency: (i) mRNA transcripts of GR were significantly upregulated in the hippocampus of mGluR7-/- animals, (ii) similar increases were seen with 5-HT1A receptor transcripts, which are thought to be directly controlled by the transcription factor GR and finally (iii) mGluR7-/- mice showed elevated sensitivity to dexamethasone-induced suppression of serum corticosterone when compared with mGluR7+/+ animals. These results indicate that mGluR7 deficiency causes dysregulation of HPA axis parameters, which may account, at least in part, for the phenotype of mGluR7-/- mice in animal models for anxiety and depression. In addition, we present evidence that protein levels of brain-derived neurotrophic factor are also elevated in the hippocampus of mGluR7-/- mice, which we discuss in the context of the antidepressant-like phenotype found in those animals. We conclude that genetic ablation of mGluR7 in mice interferes at multiple sites in the neuronal circuitry and molecular pathways implicated in affective disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Glutamato Metabotrópico/deficiencia , Estrés Fisiológico/metabolismo , Hormona Adrenocorticotrópica/sangre , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Dexametasona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Glucocorticoides/farmacología , Hipocampo/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Inmunoensayo/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , ARN Mensajero/metabolismo , Radioinmunoensayo/métodos , Receptor de Serotonina 5-HT1A/genética , Receptor de Serotonina 5-HT1A/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
6.
Proc Natl Acad Sci U S A ; 102(51): 18712-7, 2005 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-16339898

RESUMEN

Metabotropic glutamate receptor (mGluR) subtypes (mGluR1 to mGluR8) act as important pre- and postsynaptic regulators of neurotransmission in the CNS. These receptors consist of two domains, an extracellular region containing the orthosteric agonist site and a transmembrane heptahelical domain involved in G protein activation and recognition of several recently synthesized pharmacological modulators. The presynaptic receptor mGluR7 shows the highest evolutionary conservation within the family, but no selective pharmacological tool was known. Here we characterize an mGluR7-selective agonist, N,N'-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082), which directly activates receptor signaling via an allosteric site in the transmembrane domain. At transfected mammalian cells expressing mGluR7, AMN082 potently inhibits cAMP accumulation and stimulates GTPgammaS binding (EC50-values, 64-290 nM) with agonist efficacies comparable with those of L-2-amino-4-phosphonobutyrate (L-AP4) and superior to those of L-glutamate. AMN082 (< or = 10 microM) failed to show appreciable activating or inhibitory effects at other mGluR subtypes and selected ionotropic GluRs. Chimeric receptor studies position the binding site of AMN082 in the transmembrane region of mGluR7, and we demonstrate that this allosteric agonist has little, if any, effect on the potency of orthosteric ligands. Here we provide evidence for full agonist activity mediated by the heptahelical domain of family 3 G protein-coupled receptors (which have mGluR-like structure) that may lead to drug development opportunities. Further, AMN082 is orally active, penetrates the blood-brain barrier, and elevates the plasma stress hormones corticosterone and corticotropin in an mGluR7-dependent fashion. Therefore, AMN082 is a valuable tool for unraveling the role of mGluR7 in stress-related CNS disorders.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/fisiopatología , Regulación Alostérica , Sitio Alostérico/efectos de los fármacos , Animales , Células CHO , Cricetinae , Hormonas/metabolismo , Receptores de Glutamato Metabotrópico/química
7.
Neuropharmacology ; 42(8): 1109-18, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12128012

RESUMEN

Colchicine, a potent microtubule-depolymerizing agent, is well known to selectively kill dentate granule cells in the hippocampal formation in vivo. Using organotypic cultures of rat entorhino-hippocampal slices, we confirmed that in vitro exposure to 1 microM and 10 microM of colchicine reproduced a specific degeneration of the granule cells after 24 h. Similar results were obtained with other types of microtubule-disrupting agents, i.e., nocodazole, vinblastine, and Taxol. Interestingly, the actin-depolymerizing agents cytochalasin D and latrunculin A also elicited selective neurotoxicity in the dentate gyrus without affecting survival of hippocampal pyramidal cells. The selective pattern of degeneration was observable 24 h after a brief treatment with the toxins as short as 5 min, but this delayed neuronal death was unlikely to be a result of excitotoxicity because it was virtually unaffected by glutamate receptor antagonists, tetrodotoxin, or extracellular Ca(2+)-free conditions. The damaged tissues contained a large number of TUNEL-positive neurons and exhibited an increased level in caspase-3-like activity, suggesting that cytoskeleton disruption triggers an apoptosis-like process in dentate granule cells. Thus, this study may provide a basis for understanding the distinctive mechanism that supports granule cell survival.


Asunto(s)
Apoptosis/fisiología , Citoesqueleto/fisiología , Hipocampo/fisiología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Colchicina/farmacología , Citoesqueleto/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiología , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/fisiología , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...