Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 93(1): 013304, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104992

RESUMEN

Neutron imaging is a powerful tool for observing the internal structure of an object without destroying the object. Neutron imaging (neutron radiography) is a prominent application of neutrons but still requires significant improvements, for example, in sensitivity, resolution, radiation hardness, and handling of neutron imaging detectors. This paper presents the development and the first neutron imaging results of a neutron flat-panel detector (nFPD) based on an In-Ga-Zn-O (IGZO) thin-film transistor (TFT)/photodiode array coupled with a LiF/ZnS scintillator sheet. Direct photo-coupling to the scintillator increases the light collection efficiency. Moreover, unlike lens-coupled neutron cameras, the proposed detector is compact and easy to handle. Owing to the high off-state resistance of IGZO TFTs, their leakage current is lower than that of conventional TFTs, enabling the IGZO TFTs to hold an accumulated charge for a longer period of time and allowing longer exposure times for imaging. This would be a powerful feature for imaging at compact neutron sources with limited flux. This paper reports on the first neutron imaging results with an IGZO nFPD, its performance evaluation, and a demonstration of three-dimensional computed tomography with neutrons.

2.
Phys Med ; 82: 72-78, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33588230

RESUMEN

The use of carbon ion beams in cancer therapy (also known as hadron therapy) is steadily growing worldwide; therefore, the demand for more efficient dosimetry systems is also increasing because daily quality assurance (QA) measurements of hadron radiotherapy is one of the most complex and time consuming tasks. The aim of this study is to develop a two-dimensional dosimetry system that offers high spatial resolution, a large field of view, quick data response, and a linear dose-response relationship. We demonstrate the dose imaging performance of a novel digital dose imager using carbon ion beams for hadron therapy. The dose imager is based on a newly-developed gaseous detector, a well-type glass gas electron multiplier. The imager is successfully operated in a hadron therapy facility with clinical intensity beams for radiotherapy. It features a high spatial resolution of less than 1 mm and an almost linear dose-response relationship with no saturation and very low linear-energy-transfer dependence. Experimental results show that the dose imager has the potential to improve dosimetry accuracy for daily QA.


Asunto(s)
Carbono , Electrones , Gases , Transferencia Lineal de Energía , Radiometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...