Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(1): e0170223, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38078733

RESUMEN

HIV-1 infection of human macrophages leads to the downmodulation of human mannose receptor 1 (hMRC1), a cell-surface glycoprotein that is involved in the host innate immune response. We previously reported that downmodulation of hMRC1 involves the transactivator of transcription (Tat)-dependent transcriptional silencing of the hMRC1 promoter. However, the inhibitory effect of Tat on hMRC1 transcription was indirect and involved inhibition of the transcriptional activator PU.1, which normally upregulates hMRC1 expression in macrophages and other myeloid cells. We cloned a 284-bp fragment of the hMRC1 promoter, and within it, we identified four PU.1 box elements. We assessed the relative contribution of each of the four PU.1 boxes to PU.1-dependent transcriptional regulation and, surprisingly, found that only one of the four PU.1 boxes [PU.1(b)] was critically required for PU.1-mediated upregulation of luciferase expression. Transfer of this PU.1 box to a heterologous promoter conferred PU.1 responsiveness to an otherwise PU.1 insensitive promoter. Electrophoretic mobility shift assays identified this PU.1 box as a direct binding site for PU.1 both in the context of the hMRC1 promoter and the heterologous promoter. Furthermore, mutational analysis of the PU.1 protein identified the C-terminal DNA-binding domain in PU.1 as the region responsible for interaction with the PU.1 box. Recombinant HIV-1 Tat protein did not bind to the hMRC1 promoter element but efficiently interfered with the binding of PU.1 protein to the hMRC1 promoter. Thus, Tat is likely to inhibit the formation of active PU.1 transcription complexes, presumably by binding to and depleting common transcriptional cofactors.IMPORTANCEHIV-1 infection of cells results in the modulation of cellular gene expression by virus-encoded proteins in a manner that benefits the virus. We reported that HIV-1 transactivator of transcription (Tat) dysregulates the expression of the human mannose receptor 1 (hMRC1). hMRC1 is involved in the innate immune response of macrophages to foreign pathogens. Tat does not act directly on the hMRC1 promoter but instead inhibits PU.1, a cellular transcription factor regulating hMRC1 gene expression. Here, we characterize the PU.1-dependent regulation of hMRC1 expression. We identified four potential PU.1 binding sites in the hMRC1 promoter region but found that only one, PU.1(b), functioned as a true binding site for PU.1. Transfer of the PU.1(b) box to a heterologous promoter did not activate this promoter per se but rendered it responsive to PU.1. Our results support the view that PU.1 acts as a transcriptional co-factor whose activity can be regulated by HIV-1 Tat.


Asunto(s)
VIH-1 , Receptor de Manosa , Proteínas Proto-Oncogénicas , Transactivadores , Humanos , VIH-1/fisiología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Activación Transcripcional
2.
mBio ; 14(1): e0297322, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36602307

RESUMEN

Gelsolin (GSN) is a structural actin-binding protein that is known to affect actin dynamics in the cell. Using mass spectrometry, we identified GSN as a novel Vpr-interacting protein. Endogenous GSN protein was expressed at detectable levels in monocyte-derived macrophages (MDM) and in THP-1 cells, but it was undetectable at the protein level in other cell lines tested. The HIV-1 infection of MDM was associated with a reduction in GSN steady-state levels, presumably due to the Vpr-induced degradation of GSN. Indeed, the coexpression of GSN and Viral protein R (Vpr) in transiently transfected HEK293T cells resulted in the Vpr-dependent proteasomal degradation of GSN. This effect was observed for Vprs from multiple virus isolates. The overexpression of GSN in HEK293T cells had no effect on Gag expression or particle release, but it reduced the expression and packaging of the HIV-1 envelope (Env) glycoprotein and reduced viral infectivity. An analysis of the HIV-1 splicing patterns did not reveal any GSN-dependent differences, suggesting that the effect of GSN on Env expression was regulated at a posttranscriptional level. Indeed, the treatment of transfected cells with lysosomal inhibitors reversed the effect of GSN on Env stability, suggesting that GSN reduced Env expression via enhanced lysosomal degradation. Our data identify GSN as a macrophage-specific host antiviral factor that reduces the expression of HIV-1 Env. IMPORTANCE Despite dramatic progress in drug therapies, HIV-1 infection remains an incurable disease that affects millions of people worldwide. The virus establishes long-lasting reservoirs that are resistant to currently available drug treatments and allow the virus to rebound whenever drug therapy is interrupted. Macrophages are long-lived cells that are relatively insensitive to HIV-1-induced cytopathicity and thus could contribute to the viral reservoir. Here, we identified a novel host factor, gelsolin, that is expressed at high levels in macrophages and inhibits viral infectivity by modulating the expression of the HIV-1 Env glycoprotein, which is critical in the spread of an HIV-1 infection. Importantly, the viral protein Vpr induces the degradation of gelsolin and thus counteracts its antiviral activity. Our study provides significant and novel insights into HIV-1 virus-host interactions and furthers our understanding of the importance of Vpr in HIV-1 infection and pathogenesis.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Gelsolina/metabolismo , Productos del Gen env/metabolismo , Células HEK293 , Células Mieloides/metabolismo , Antivirales/metabolismo
3.
J Virol ; 96(14): e0065222, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35766490

RESUMEN

Human mannose receptor 1 (MRC1) is a cell surface receptor expressed in macrophages and other myeloid cells that inhibits human immunodeficiency virus type 1 (HIV-1) particle release by tethering virions to producer cell membranes. HIV-1 counteracts MRC1 expression by inhibiting mrc1 transcription. Here, we investigated the mechanism of MRC1 downregulation in HIV-1-infected macrophages. We identified the myeloid cell-specific transcription factor PU.1 as critical for regulating MRC1 expression. In the course of our study, we recognized a complex interplay between HIV-1 Tat and PU.1 transcription factors: Tat upregulated HIV-1 gene expression but inhibited mrc1 transcription, whereas PU.1 inhibited HIV-1 transcription but activated MRC1 expression. Disturbing this equilibrium by silencing PU.1 resulted in increased HIV-1 gene expression and reduced MRC1 promoter activity. Our study identified PU.1 as a central player in transcriptional control, regulating a complex interplay between viral and host gene expression in HIV-infected macrophages. IMPORTANCE HIV-1 replication in primary human cells depends on the activity of virus-encoded proteins but also involves cellular factors that can either promote (viral dependency factors) or inhibit (host restriction factors) virus replication. In previous work, we identified human MRC1 as a macrophage-specific host restriction factor that inhibits the detachment of viral particles from infected cells. Here, we report that HIV-1 counteracts this effect of MRC1 by imposing a transcriptional block on cellular MRC1 gene expression. The transcriptional inhibition of the MRC1 gene is accomplished by Tat, an HIV-1 factor whose best-described function actually is the enhancement of HIV-1 gene expression. Thus, HIV-1 has evolved to use the same protein for (i) activation of its own gene expression while (ii) inhibiting expression of MRC1 and other host factors.


Asunto(s)
Infecciones por VIH , Duplicado del Terminal Largo de VIH , Receptor de Manosa , Regulación hacia Arriba , Regulación Viral de la Expresión Génica , Infecciones por VIH/fisiopatología , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Macrófagos/virología , Receptor de Manosa/genética , Regiones Promotoras Genéticas , Activación Transcripcional
4.
J Virol ; 95(23): e0117021, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34523960

RESUMEN

Vif is a lentiviral accessory protein that counteracts the antiviral activity of cellular APOBEC3 (A3) cytidine deaminases in infected cells. The exact contribution of each member of the A3 family for the restriction of HIV-2 is still unclear. Thus, the aim of this work was to identify the A3s with anti-HIV-2 activity and compare their restriction potential for HIV-2 and HIV-1. We found that A3G is a strong restriction factor of both types of viruses and A3C restricts neither HIV-1 nor HIV-2. Importantly, A3B exhibited potent antiviral activity against HIV-2, but its effect was negligible against HIV-1. Whereas A3B is packaged with similar efficiency into both viruses in the absence of Vif, HIV-2 and HIV-1 differ in their sensitivity to A3B. HIV-2 Vif targets A3B by reducing its cellular levels and inhibiting its packaging into virions, whereas HIV-1 Vif did not evolve to antagonize A3B. Our observations support the hypothesis that during wild-type HIV-1 and HIV-2 infections, both viruses are able to replicate in host cells expressing A3B but using different mechanisms, probably resulting from a Vif functional adaptation over evolutionary time. Our findings provide new insights into the differences between Vif protein and their cellular partners in the two human viruses. Of note, A3B is highly expressed in some cancer cells and may cause deamination-induced mutations in these cancers. Thus, A3B may represent an important therapeutic target. As such, the ability of HIV-2 Vif to induce A3B degradation could be an effective tool for cancer therapy. IMPORTANCE Primate lentiviruses encode a series of accessory genes that facilitate virus adaptation to its host. Among those, the vif-encoded protein functions primarily by targeting the APOBEC3 (A3) family of cytidine deaminases. All lentiviral Vif proteins have the ability to antagonize A3G; however, antagonizing other members of the A3 family is variable. Here, we report that HIV-2 Vif, unlike HIV-1 Vif, can induce degradation of A3B. Consequently, HIV-2 Vif but not HIV-1 Vif can inhibit the packaging of A3B. Interestingly, while A3B is packaged efficiently into the core of both HIV-1 and HIV-2 virions in the absence of Vif, it only affects the infectivity of HIV-2 particles. Thus, HIV-1 and HIV-2 have evolved two distinct mechanisms to antagonize the antiviral activity of A3B. Aside from its antiviral activity, A3B has been associated with mutations in some cancers. Degradation of A3B by HIV-2 Vif may be useful for cancer therapies.


Asunto(s)
Citidina Desaminasa/metabolismo , Productos del Gen vif/metabolismo , VIH-1/metabolismo , VIH-2/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Citidina Desaminasa/genética , Células HEK293 , Infecciones por VIH , Humanos , Antígenos de Histocompatibilidad Menor/genética , Receptor EphB2
5.
J Virol ; 94(7)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31941780

RESUMEN

Vif counteracts the host restriction factor APOBEC3G (A3G) and other APOBEC3s by preventing the incorporation of A3G into progeny virions. We previously identified Vif mutants with a dominant-negative (D/N) phenotype that interfered with the function of wild-type Vif, inhibited the degradation of A3G, and reduced the infectivity of viral particles by increased packaging of A3G. However, the mechanism of interference remained unclear, in particular since all D/N Vif mutants were unable to bind Cul5 and some mutants additionally failed to bind A3G, ruling out competitive binding to A3G or the E3 ubiquitin ligase complex as the sole mechanism. The goal of the current study was to revisit the mechanism of D/N interference by Vif mutants and analyze the possible involvement of core binding factor beta (CBFß) in this process. We found a clear correlation of D/N properties of Vif mutants with their ability to engage CBFß. Only mutants that retained the ability to bind CBFß exhibited the D/N phenotype. Competition studies revealed that D/N Vif mutants directly interfered with the association of CBFß and wild-type Vif. Furthermore, overexpression of CBFß counteracted the interference of D/N Vif mutants with A3G degradation by wild-type Vif. Finally, overexpression of Runx1 mimicked the effect of D/N Vif mutants and inhibited the degradation of A3G by wild-type Vif. Taken together, we identified CBFß as the key player involved in D/N interference by Vif.IMPORTANCE Of all the accessory proteins encoded by HIV-1 and other primate lentiviruses, Vif has arguably the strongest potential as a target for antiviral therapy. This conclusion is based on the observation that replication of HIV-1 in vivo is critically dependent on Vif. Thus, inhibiting the function of Vif via small-molecule inhibitors or other approaches has significant therapeutic potential. We previously identified dominant-negative (D/N) Vif variants whose expression interferes with the function of virus-encoded wild-type Vif. We now show that D/N interference involves competitive binding of D/N Vif variants to the transcriptional cofactor core binding factor beta (CBFß), which is expressed in cells in limiting quantities. Overexpression of CBFß neutralized the D/N phenotype of Vif. In contrast, overexpression of Runx1, a cellular binding partner of CBFß, phenocopied the D/N Vif phenotype by sequestering endogenous CBFß. Thus, our results provide proof of principle that D/N Vif variants could have therapeutic potential.


Asunto(s)
Desaminasa APOBEC-3G/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Unión Competitiva , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteínas Cullin/metabolismo , Elonguina/metabolismo , Genes Dominantes , Células HEK293 , VIH-1/fisiología , Humanos , Leucocitos Mononucleares/metabolismo , Mutación , Fenotipo , Virión
6.
PLoS Pathog ; 14(11): e1007372, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30496280

RESUMEN

Apolipoprotein E (ApoE) belongs to a class of cellular proteins involved in lipid metabolism. ApoE is a polymorphic protein produced primarily in macrophages and astrocytes. Different isoforms of ApoE have been associated with susceptibility to various diseases including Alzheimer's and cardiovascular diseases. ApoE expression has also been found to affect susceptibility to several viral diseases, including Hepatitis C and E, but its effect on the life cycle of HIV-1 remains obscure. In this study, we initially found that HIV-1 infection selectively up-regulated ApoE in human monocyte-derived macrophages (MDMs). Interestingly, ApoE knockdown in MDMs enhanced the production and infectivity of HIV-1, and was associated with increased localization of viral envelope (Env) proteins to the cell surface. Consistent with this, ApoE over-expression in 293T cells suppressed Env expression and viral infectivity, which was also observed with HIV-2 Env, but not with VSV-G Env. Mechanistic studies revealed that the C-terminal region of ApoE was required for its inhibitory effect on HIV-1 Env expression. Moreover, we found that ApoE and Env co-localized in the cells, and ApoE associated with gp160, the precursor form of Env, and that the suppression of Env expression by ApoE was cancelled by the treatment with lysosomal inhibitors. Overall, our study revealed that ApoE is an HIV-1-inducible inhibitor of viral production and infectivity in macrophages that exerts its anti-HIV-1 activity through association with gp160 Env via the C-terminal region, which results in subsequent degradation of gp160 Env in the lysosomes.


Asunto(s)
Apolipoproteínas E/fisiología , Infecciones por VIH/metabolismo , Macrófagos/metabolismo , Adulto , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Regulación de la Expresión Génica/genética , Células HEK293 , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/metabolismo , Infecciones por VIH/prevención & control , VIH-1/metabolismo , Humanos , Macrófagos/virología , Masculino , Regulación hacia Arriba , Replicación Viral/genética , Replicación Viral/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
7.
Cell Rep ; 22(3): 786-795, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29346774

RESUMEN

Human mannose receptor 1 (hMRC1) is expressed on the surface of most tissue macrophages, dendritic cells, and select lymphatic or liver endothelial cells. HMRC1 contributes to the binding of HIV-1 to monocyte-derived macrophages (MDMs) and is involved in the endocytic uptake of HIV-1 into these cells. Here, we identify hMRC1 as an antiviral factor that inhibits virus release through a bone marrow stromal antigen 2 (BST-2)-like mechanism. Virions produced in the presence of hMRC1 accumulated in clusters at the cell surface but were fully infectious. HIV-1 counteracted the effect by transcriptional silencing of hMRC1. The effect of hMRC1 was not virus isolate specific. Surprisingly, deletion of the Env protein, which is known to interact with hMRC1, did not relieve the hMRC1 antiviral activity, suggesting the involvement of additional cellular factor(s) in the process. Our data reveal an antiviral mechanism that is active in primary human macrophages and is counteracted by HIV-1 through downregulation of hMRC1.


Asunto(s)
VIH-1/efectos de los fármacos , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Lectinas de Unión a Manosa/metabolismo , Receptores de Superficie Celular/metabolismo , VIH-1/genética , Humanos , Receptor de Manosa , Liberación del Virus
8.
Virology ; 504: 1-11, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28131088

RESUMEN

APOBEC3G (A3G) is a cytidine deaminase with potent antiviral activity that is antagonized by Vif. A3G is expressed in a cell type-specific manner and some semi-permissive cells, including A3.01, express A3G but fail to block replication of Vif-null HIV-1. Here we explored the semi-permissive nature of A3.01 cells and found it to be defined exclusively by the levels of A3G. Indeed, minor changes in A3G levels rendered A3.01 cells either fully permissive or non-permissive for Vif-null HIV-1. Our data indicate that A3.01 cells express sub-lethal levels of catalytically active A3G that affects Vif-null HIV-1 at the proviral level but does not completely block virus replication due to purifying selection. Attempts to use the selective pressure exerted by such sub-lethal levels of A3G to select for APOBEC-resistant Vif-null virus capable of replicating in H9 cells failed despite passaging virus for five months, demonstrating that Vif is a critical viral accessory protein.


Asunto(s)
Desaminasa APOBEC-3G/genética , Linfocitos T CD4-Positivos/virología , Provirus/crecimiento & desarrollo , Replicación Viral/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G/antagonistas & inhibidores , Desaminasa APOBEC-3G/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Preescolar , Femenino , Células HEK293 , Infecciones por VIH/virología , VIH-1/genética , Células HeLa , Humanos , Células Jurkat , Provirus/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Viral/genética , Análisis de Secuencia de ARN , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética
9.
PLoS Pathog ; 11(5): e1004928, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25996507

RESUMEN

For nearly 20 years, the principal biological function of the HIV-2/SIV Vpx gene has been thought to be required for optimal virus replication in myeloid cells. Mechanistically, this Vpx activity was recently reported to involve the degradation of Sterile Alpha Motif and HD domain-containing protein 1 (SAMHD1) in this cell lineage. Here we show that when macaques were inoculated with either the T cell tropic SIVmac239 or the macrophage tropic SIVmac316 carrying a Vpx point mutation that abrogates the recruitment of DCAF1 and the ensuing degradation of endogenous SAMHD1 in cultured CD4+ T cells, virus acquisition, progeny virion production in memory CD4+ T cells during acute infection, and the maintenance of set-point viremia were greatly attenuated. Revertant viruses emerging in two animals exhibited an augmented replication phenotype in memory CD4+ T lymphocytes both in vitro and in vivo, which was associated with reduced levels of endogenous SAMHD1. These results indicate that a critical role of Vpx in vivo is to promote the degradation of SAMHD1 in memory CD4+ T lymphocytes, thereby generating high levels of plasma viremia and the induction of immunodeficiency.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Interacciones Huésped-Patógeno , Proteínas de Unión al GTP Monoméricas/antagonistas & inhibidores , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Virus de la Inmunodeficiencia de los Simios/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Sustitución de Aminoácidos , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Eliminación de Gen , Células HEK293 , Humanos , Memoria Inmunológica , Macaca mulatta , Proteínas de Unión al GTP Monoméricas/metabolismo , Fragmentos de Péptidos , Fosforilación , Mutación Puntual , Procesamiento Proteico-Postraduccional , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteína 1 que Contiene Dominios SAM y HD , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/genética , Viremia/inmunología , Viremia/metabolismo , Viremia/virología
10.
J Virol ; 88(9): 4839-52, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24522927

RESUMEN

UNLABELLED: Vif is a lentiviral accessory protein that regulates viral infectivity in part by inducing proteasomal degradation of APOBEC3G (A3G). Recently, CBFß was found to facilitate Vif-dependent degradation of A3G. However, the exact role of CBFß remains unclear. Several studies noted reduced Vif expression in CBFß knockdown cells while others saw no significant impact of CBFß on Vif stability. Here, we confirmed that CBFß increases Vif steady-state levels. CBFß affected expression of neither viral Gag nor Vpu protein, indicating that CBFß regulates Vif expression posttranscriptionally. Kinetic studies revealed effects of CBFß on both metabolic stability and the rate of Vif biosynthesis. These effects were dependent on the ability of CBFß to interact with Vif. Importantly, at comparable Vif levels, CBFß further enhanced A3G degradation, suggesting that CBFß facilitates A3G degradation by increasing the levels of Vif and by independently augmenting the ability of Vif to target A3G for degradation. CBFß also increased expression of RUNX1 by enhancing RUNX1 biosynthesis. Unlike Vif, however, CBFß had no detectable effect on RUNX1 metabolic stability. We propose that CBFß acts as a chaperone to stabilize Vif during and after synthesis and to facilitate interaction of Vif with cellular cofactors required for the efficient degradation of A3G. IMPORTANCE: In this study, we show that CBFß has a profound effect on the expression of the HIV-1 infectivity factor Vif and the cellular transcription factor RUNX1, two proteins that physically interact with CBFß. Kinetic studies revealed that CBFß increases the rate of Vif and RUNX1 biosynthesis at the level of translation. Mutants of Vif unable to physically interact with CBFß were nonresponsive to CBFß. Our data suggest that CBFß exerts a chaperone-like activity (i) to minimize the production of defective ribosomal products (DRiPs) by binding to nascent protein to prevent premature termination and (ii) to stabilize mature protein conformation to ensure proper function of Vif and RUNX1. Thus, we identified a novel mechanism of protein regulation that affects both viral and cellular factors and thus has broad implications beyond the immediate HIV field.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Citidina Desaminasa/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G , Células HeLa , Humanos , Chaperonas Moleculares/metabolismo , Biosíntesis de Proteínas , Proteolisis
11.
Retrovirology ; 9: 86, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23092512

RESUMEN

BACKGROUND: Sterile Alpha Motif and HD domain-containing protein 1 (SAMHD1) is a recently identified host factor that restricts HIV-1 replication in dendritic and myeloid cells. SAMHD1 is a dNTPase that presumably reduces the cellular dNTP levels to levels too low for retroviral reverse transcription to occur. However, HIV-2 and SIV encoded Vpx counteracts the antiviral effects of SAMHD1 by targeting the protein for proteasomal degradation. SAMHD1 is encoded by a multiply spliced mRNA and consists of 16 coding exons. RESULTS: Here, we identified two naturally occurring splice variants lacking exons 8-9 and 14, respectively. Like wildtype SAMHD1, both splice variants localize primarily to the nucleus, interact with Vpx, and retain some sensitivity to Vpx-dependent degradation. However, the splice variants differ from full-length SAMHD1 in their metabolic stability and catalytic activity. While full-length SAMHD1 is metabolically stable in uninfected cells, both splice variants were inherently metabolically unstable and were rapidly degraded even in the absence of Vpx. Vpx strongly increased the rate of degradation of full-length SAMHD1 and further accelerated the degradation of the splice variants. However, the effect of Vpx on the splice variants was more modest due to the inherent instability of these proteins. Analysis of dNTPase activity indicates that neither splice variant is catalytically active. CONCLUSIONS: The identification of SAMHD1 splice variants exposes a potential regulatory mechanism that could enable the cell to control its dNTPase activity on a post-transcriptional level.


Asunto(s)
Variación Genética , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Línea Celular , Núcleo Celular/química , Exones , Humanos , Modelos Moleculares , Estabilidad Proteica , Proteína 1 que Contiene Dominios SAM y HD
12.
J Virol ; 85(22): 11981-94, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21917971

RESUMEN

BST-2/CD317/HM1.24/tetherin is a B-cell antigen overexpressed on the surface of myeloma cell lines and on neoplastic plasma cells of patients with multiple myeloma. Antibodies to BST-2 are in clinical trial for the treatment of multiple myeloma and are considered for the treatment of solid tumors with high BST-2 antigen levels. Functionally, BST-2 restricts the secretion of retroviruses, including human immunodeficiency virus type 1, as well as members of the herpesvirus, filovirus, and arenavirus families, presumably by tethering nascent virions to the cell surface. Here we report that BST-2 antibody treatment facilitates virus release from BST-2(+) cells by interfering with the tethering activity of BST-2. BST-2 antibodies were unable to release already tethered virions and were most effective when added early during virus production. BST-2 antibody treatment did not affect BST-2 dimerization and did not reduce the cell surface expression of BST-2. Interestingly, BST-2 antibody treatment reduced the nonspecific shedding of BST-2 and limited the encapsidation of BST-2 into virions. Finally, flotation analyses indicate that BST-2 antibodies affect the distribution of BST-2 within membrane rafts. Our data suggest that BST-2 antibody treatment may enhance virus release by inducing a redistribution of BST-2 at the cell surface, thus preventing it from accumulating at the sites of virus budding.


Asunto(s)
Anticuerpos/metabolismo , Antígenos CD/inmunología , VIH-1/fisiología , VIH-2/fisiología , Liberación del Virus , Línea Celular , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/inmunología , VIH-1/crecimiento & desarrollo , VIH-2/crecimiento & desarrollo , Humanos
13.
J Virol ; 85(6): 2611-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21191020

RESUMEN

BST-2/CD317/tetherin is a host factor that inhibits the release of HIV-1 and other unrelated viruses. A current model proposes that BST-2 physically tethers virions to the surface of virus-producing cells. The HIV-1-encoded Vpu protein effectively antagonizes the activity of BST-2. How Vpu accomplishes this task remains unclear; however, it is known that Vpu has the ability to down-modulate BST-2 from the cell surface. Here we analyzed the effects of Vpu on BST-2 by performing a series of kinetic studies with HeLa, 293T, and CEMx174 cells. Our results indicate that the surface downregulation of BST-2 is not due to an accelerated internalization or reduced recycling of internalized BST-2 but instead is caused by interference with the resupply of newly synthesized BST-2 from within the cell. While our data confirm previous reports that the high-level expression of Vpu can cause the endoplasmic reticulum (ER)-associated degradation of BST-2, we found no evidence that Vpu targets endogenous BST-2 in the ER in the course of a viral infection. Instead, we found that Vpu acts in a post-ER compartment and increases the turnover of newly synthesized mature BST-2. Our observation that Vpu does not affect the recycling of BST-2 suggests that Vpu does not act directly at the cell surface but may interfere with the trafficking of newly synthesized BST-2 to the cell surface, resulting in the accelerated targeting of BST-2 to the lysosomal compartment for degradation.


Asunto(s)
Antígenos CD/metabolismo , VIH-1/inmunología , VIH-1/patogenicidad , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Antígenos CD/inmunología , Línea Celular , Regulación hacia Abajo , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Expresión Génica , Proteínas del Virus de la Inmunodeficiencia Humana/inmunología , Humanos , Transporte de Proteínas , Proteínas Reguladoras y Accesorias Virales/inmunología
14.
J Virol ; 84(21): 11067-75, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20702622

RESUMEN

APOBEC3F (A3F) is a member of the family of cytidine deaminases that is often coexpressed with APOBEC3G (A3G) in cells susceptible to HIV infection. A3F has been shown to have strong antiviral activity in transient-expression studies, and together with A3G, it is considered the most potent cytidine deaminase targeting HIV. Previous analyses suggested that the antiviral properties of A3F can be dissociated from its catalytic deaminase activity. We were able to confirm the deaminase-independent antiviral activity of exogenously expressed A3F; however, we also noted that exogenous expression was associated with very high A3F mRNA and protein levels. In analogy to our previous study of A3G, we produced stable HeLa cell lines constitutively expressing wild-type or deaminase-defective A3F at levels that were more in line with the levels of endogenous A3F in H9 cells. A3F expressed in stable HeLa cells was packaged into Vif-deficient viral particles with an efficiency similar to that of A3G and was properly targeted to the viral nucleoprotein complex. Surprisingly, however, neither wild-type nor deaminase-defective A3F inhibited HIV-1 infectivity. These results imply that the antiviral activity of endogenous A3F is negligible compared to that of A3G.


Asunto(s)
Citidina Desaminasa/inmunología , Citosina Desaminasa/inmunología , Desaminasa APOBEC-3G , Citosina Desaminasa/análisis , Citosina Desaminasa/genética , Infecciones por VIH , VIH-1/patogenicidad , Células HeLa , Humanos , ARN Mensajero/análisis , Virión , Productos del Gen vif del Virus de la Inmunodeficiencia Humana
15.
J Virol ; 84(10): 5201-11, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20219919

RESUMEN

APOBEC3G (A3G) is a host cytidine deaminase that serves as a potent intrinsic inhibitor of retroviral replication. A3G is packaged into human immunodeficiency virus type 1 virions and deaminates deoxycytidine to deoxyuridine on nascent minus-strand retroviral cDNA, leading to hyper-deoxyguanine-to-deoxyadenine mutations on positive-strand cDNA and inhibition of viral replication. The antiviral activity of A3G is suppressed by Vif, a lentiviral accessory protein that prevents encapsidation of A3G. In this study, we identified dominant negative mutants of Vif that interfered with the ability of wild-type Vif to inhibit the encapsidation and antiviral activity of A3G. These mutants were nonfunctional due to mutations in the highly conserved HCCH and/or SOCS box motifs, which are required for assembly of a functional Cul5-E3 ubiquitin ligase complex. Similarly, mutation or deletion of a PPLP motif, which was previously reported to be important for Vif dimerization, induced a dominant negative phenotype. Expression of dominant negative Vif counteracted the Vif-induced reduction of intracellular A3G levels, presumably by preventing Vif-induced A3G degradation. Consequently, dominant negative Vif interfered with wild-type Vif's ability to exclude A3G from viral particles and reduced viral infectivity despite the presence of wild-type Vif. The identification of dominant negative mutants of Vif presents exciting possibilities for the design of novel antiviral strategies.


Asunto(s)
Citidina Desaminasa/antagonistas & inhibidores , VIH-1/inmunología , VIH-1/patogenicidad , Proteínas Mutantes/metabolismo , Mutación , Factores de Virulencia/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G , Línea Celular , VIH-1/genética , Humanos , Viabilidad Microbiana , Proteínas Mutantes/genética , Factores de Virulencia/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética
16.
Retrovirology ; 6: 99, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19886996

RESUMEN

BACKGROUND: The cellular cytidine deaminase APOBEC3G (A3G), when incorporated into the human immunodeficiency virus type 1 (HIV-1), renders viral particles non-infectious. We previously observed that mutation of a single cysteine residue of A3G (C100S) inhibited A3G packaging. In addition, several recent studies showed that mutation of tryptophan 127 (W127) and tyrosine 124 (Y124) inhibited A3G encapsidation suggesting that the N-terminal CDA constitutes a viral packaging signal in A3G. It was also reported that W127 and Y124 affect A3G oligomerization. RESULTS: Here we studied the mechanistic basis of the packaging defect of A3G W127A and Y124A mutants. Interestingly, cell fractionation studies revealed a strong correlation between encapsidation, lipid raft association, and genomic RNA binding of A3G. Surprisingly, the presence of a C-terminal epitope tag affected lipid raft association and encapsidation of the A3G W127A mutant but had no effect on wt A3G encapsidation, lipid raft association, and interaction with viral genomic RNA. Mutation of Y124 abolished A3G encapsidation irrespective of the presence or absence of an epitope tag. Contrasting a recent report, our co-immunoprecipitation studies failed to reveal a correlation between A3G oligomerization and A3G encapsidation. In fact, our W127A and Y124A mutants both retained the ability to oligomerize. CONCLUSION: Our results confirm that W127 and Y124 residues in A3G are important for encapsidation into HIV-1 virions and our data establish a novel correlation between genomic RNA binding, lipid raft association, and viral packaging of A3G. In contrast, we were unable to confirm a role of W127 and Y124 in A3G oligomerization and we thus failed to confirm a correlation between A3G oligomerization and virus encapsidation.


Asunto(s)
Citidina Desaminasa/metabolismo , VIH-1/fisiología , Microdominios de Membrana/metabolismo , Ensamble de Virus , Desaminasa APOBEC-3G , Sustitución de Aminoácidos/genética , Fraccionamiento Celular , Citidina Desaminasa/genética , Humanos , Inmunoprecipitación , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Unión Proteica , ARN Viral/metabolismo
17.
Retrovirology ; 6: 80, 2009 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-19737401

RESUMEN

BACKGROUND: The Human Immunodeficiency virus type 1 (HIV-1) Vpu protein enhances virus release from infected cells and induces proteasomal degradation of CD4. Recent work identified BST-2/CD317 as a host factor that inhibits HIV-1 virus release in a Vpu sensitive manner. A current working model proposes that BST-2 inhibits virus release by tethering viral particles to the cell surface thereby triggering their subsequent endocytosis. RESULTS: Here we defined structural properties of BST-2 required for inhibition of virus release and for sensitivity to Vpu. We found that BST-2 is modified by N-linked glycosylation at two sites in the extracellular domain. However, N-linked glycosylation was not important for inhibition of HIV-1 virus release nor did it affect surface expression or sensitivity to Vpu. Rodent BST-2 was previously found to form cysteine-linked dimers. Analysis of single, double, or triple cysteine mutants revealed that any one of three cysteine residues present in the BST-2 extracellular domain was sufficient for BST-2 dimerization, for inhibition of virus release, and sensitivity to Vpu. In contrast, BST-2 lacking all three cysteines in its ectodomain was unable to inhibit release of wild type or Vpu-deficient HIV-1 virions. This defect was not caused by a gross defect in BST-2 trafficking as the mutant protein was expressed at the cell surface of transfected 293T cells and was down-modulated by Vpu similar to wild type BST-2. CONCLUSION: While BST-2 glycosylation was functionally irrelevant, formation of cysteine-linked dimers appeared to be important for inhibition of virus release. However lack of dimerization did not prevent surface expression or Vpu sensitivity of BST-2, suggesting Vpu sensitivity and inhibition of virus release are separable properties of BST-2.


Asunto(s)
Antígenos CD/inmunología , VIH-1/inmunología , VIH-1/fisiología , Proteínas del Virus de la Inmunodeficiencia Humana/fisiología , Glicoproteínas de Membrana/inmunología , Proteínas Reguladoras y Accesorias Virales/fisiología , Replicación Viral , Sustitución de Aminoácidos/genética , Antígenos CD/metabolismo , Línea Celular , Membrana Celular/química , Cisteína/genética , Dimerización , Disulfuros , Proteínas Ligadas a GPI , Glicosilación , Humanos , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo , Mutagénesis Sitio-Dirigida
18.
Proc Natl Acad Sci U S A ; 106(8): 2868-73, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19196977

RESUMEN

HIV-1 Vpu enhances the release of virions from infected cells. Recent work identified Bst-2/CD317/tetherin as a host factor whose inhibitory activity on viral release is counteracted by Vpu. A current working model proposes that Bst-2 inhibits virus release by tethering viral particles to the cell surface. Here, we analyzed endogenous Bst-2 with respect to its effect on virus release from HeLa cells, T cells, and macrophages. We noted significant cell type-dependent variation in Bst-2 expression. Vpu caused a reduction in Bst-2 expression in transfected HeLa cells and long-term infected macrophages. However, Vpu expression did not result in cell surface down-modulation of Bst-2 or a reduction in intracellular Bst-2 expression in CEMx174 or H9 cells, yet virus replication in these cells was Vpu-responsive. Surprisingly, Bst-2 was undetectable in cell-free virions that were recovered from the surface of HeLa cells by physical shearing, suggesting that a tethering model may not explain all of the functional properties of Bst-2. Taken together we conclude that enhancement of virus release by Vpu does not, at least in CEMx174 and H9 cells, require cell surface down-modulation or intracellular depletion of Bst-2, nor does it entail exclusion of Bst-2 from viral particles.


Asunto(s)
Antígenos CD/fisiología , Regulación hacia Abajo , VIH-1/fisiología , Proteínas del Virus de la Inmunodeficiencia Humana/fisiología , Glicoproteínas de Membrana/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología , Antígenos CD/metabolismo , Western Blotting , Línea Celular , Membrana Celular/metabolismo , Citometría de Flujo , Proteínas Ligadas a GPI , Humanos , Sueros Inmunes , Glicoproteínas de Membrana/metabolismo , Virión , Ensamble de Virus
19.
J Virol ; 83(2): 1156-60, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19004939

RESUMEN

HIV-1 Vif counteracts the antiviral activity of APOBEC3G by inhibiting its encapsidation into virions. Here, we compared the relative sensitivity to Vif of APOBEC3G in stable HeLa cells containing APOBEC3G (HeLa-A3G cells) versus that of newly synthesized APOBEC3G. We observed that newly synthesized APOBEC3G was more sensitive to degradation than preexisting APOBEC3G. Nevertheless, preexisting and transiently expressed APOBEC3G were packaged with similar efficiencies into vif-deficient human immunodeficiency virus type 1 (HIV-1) virions, and Vif inhibited the encapsidation of both forms of APOBEC3G into HIV particles equally well. Our results suggest that HIV-1 Vif preferentially induces degradation of newly synthesized APOBEC3G but indiscriminately inhibits encapsidation of "old" and "new" APOBEC3G.


Asunto(s)
Citidina Desaminasa/antagonistas & inhibidores , Citidina Desaminasa/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G , VIH-1/fisiología , Células HeLa , Humanos
20.
Virology ; 379(2): 266-74, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18675436

RESUMEN

APOBEC3G (APO3G) is a cellular cytidine deaminase with potent antiviral activity. In the case of HIV, the antiviral activity of APO3G is counteracted by the viral Vif protein. Monocyte-derived macrophages (MDM) are terminally differentiated, non-dividing cells susceptible to HIV infection. Human MDM are known to express APO3G and HIV replication in these cells is dependent on Vif. Here we analyzed the correlation between HIV-1 replication and APO3G expression in MDM. Replication of wild type HIV-1 induced a gradual 4-5-fold reduction in APO3G expression. The efficiency of APO3G downregulation correlated with the efficiency of virus replication. Interestingly, despite downregulation of APO3G, the relative infectivity of viruses rapidly declined during the course of infection and was already reduced approximately 90% prior to peak virus production. Cell-free virus preparations showed increased levels of a 41 kDa MA-CA processing intermediate. Sequence analysis around the MA-CA cleavage site and the protease and LTR regions did not reveal deaminase-induced hypermutation of the viral genome, suggesting that APO3G activity is not responsible for the incomplete Gag processing. Thus, the loss of infectivity of HIV-1 viruses produced from long-term infected primary macrophages is due to an APO3G-independent mechanism.


Asunto(s)
Citidina Desaminasa/fisiología , VIH-1/fisiología , Desaminasa APOBEC-3G , Secuencia de Bases , Diferenciación Celular , Células Cultivadas , Cartilla de ADN/genética , ADN Viral/genética , Regulación hacia Abajo , Genoma Viral , VIH-1/genética , VIH-1/patogenicidad , Humanos , Macrófagos/enzimología , Macrófagos/patología , Macrófagos/virología , Mutación , Procesamiento Proteico-Postraduccional , Virulencia , Replicación Viral/fisiología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...