Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 582: 216509, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036042

RESUMEN

Lung cancer, primarily non-small-cell lung cancer (NSCLC), is a significant cause of cancer-related mortality worldwide. Cisplatin-based chemotherapy is a standard treatment for NSCLC; however, its effectiveness is often limited due to the development of resistance, leading to NSCLC recurrence. Thus, the identification of effective chemosensitizers for cisplatin is of paramount importance. The integrated stress response (ISR), activated by various cellular stresses and mediated by eIF2α kinases, has been implicated in drug sensitivity. ISR activation globally suppresses protein synthesis while selectively promoting the translation of ATF4 mRNA, which can induce pro-apoptotic proteins such as CHOP, ATF3, and TRIB3. To expedite and economize the development of chemosensitizers for cisplatin treatment in NSCLC, we employed a strategy to screen an FDA-approved drug library for ISR activators. In this study, we identified mifepristone as a potent ISR activator. Mifepristone activated the HRI/eIF2α/ATF4 axis, leading to the induction of pro-apoptotic factors, independent of its known role as a synthetic steroid. Our in vitro and in vivo models demonstrated mifepristone's potential to inhibit NSCLC re-proliferation following cisplatin treatment and tumor growth, respectively, via the ISR-mediated cell death pathway. These findings suggest that mifepristone, as an ISR activator, could enhance the efficacy of cisplatin-based therapy for NSCLC, highlighting the potential of drug repositioning in the search for effective chemosensitizers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mifepristona/farmacología , Reposicionamiento de Medicamentos , Transducción de Señal , Línea Celular Tumoral , Resistencia a Antineoplásicos
3.
Proc Natl Acad Sci U S A ; 119(40): e2203307119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161914

RESUMEN

Brown adipose tissue (BAT) is a highly specialized adipose tissue in its immobile location and size during the entire adulthood. In response to cold exposure and other ß3-adrenoreceptor stimuli, BAT commits energy consumption by nonshivering thermogenesis (NST). However, the molecular machinery in controlling the BAT mass in adults is unknown. Here, we show our surprising findings that the BAT mass and functions can be manipulated in adult animals by controlling BAT adipocyte differentiation in vivo. Platelet-derived growth factor receptor α (PDGFα) expressed in BAT progenitor cells served a signaling function to avert adipose progenitor differentiation. Genetic and pharmacological loss-of-function of PDGFRα eliminated the differentiation barrier and permitted progenitor cell differentiation to mature and functional BAT adipocytes. Consequently, an enlarged BAT mass (megaBAT) was created by PDGFRα inhibition owing to increases of brown adipocyte numbers. Under cold exposure, a microRNA-485 (miR-485) was identified as a master suppressor of the PDGFRα signaling, and delivery of miR-485 also produced megaBAT in adult animals. Noticeably, megaBAT markedly improved global metabolism, insulin sensitivity, high-fat-diet (HFD)-induced obesity, and diabetes by enhancing NST. Together, our findings demonstrate that the adult BAT mass can be increased by blocking the previously unprecedented inhibitory signaling for BAT progenitor cell differentiation. Thus, blocking the PDGFRα for the generation of megaBAT provides an attractive strategy for treating obesity and type 2 diabetes mellitus (T2DM).


Asunto(s)
Adipocitos Marrones , Adipocitos , Adipogénesis , Tejido Adiposo Pardo , MicroARNs , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Adipocitos/citología , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Animales , Diabetes Mellitus Tipo 2/terapia , Metabolismo Energético , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/terapia , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Termogénesis/genética
4.
Sci Rep ; 12(1): 12754, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882965

RESUMEN

As a soil biomineralization process, casein-assisted enzyme-induced carbonate precipitation (EICP) yielded biocemented specimens with significantly higher compressive strength than specimens cemented by regular or skim-milk-assisted EICP treatments. The compound concentration and curing strategy of casein-assisted EICP were experimentally optimized to maximize the compressive strength of precipitates with low calcium carbonate content. Under the optimized EICP conditions (0.893 M urea, 0.581 M CaCl2, 2.6 g/L urease enzyme, and 38.87 g/L casein), the unconfined compressive strengths reached 2 MPa. The scanning electron micrographs of selected samples provided microscopic evidence that EICP treatments assisted using skim milk and casein impart distinctive strength-enhancement mechanisms. The ammonium ions released from urea hydrolysis created an alkaline environment that makes casein dissociated into the pore water. As the casein-containing pore water became more viscous, the increased contact area with particles facilitated the precipitation of co-bound CaCO3 minerals and casein in the pore water. Casein was identified as a more efficient assisting agent than skim milk for low-level CaCO3 precipitation by EICP treatment.


Asunto(s)
Caseínas , Arena , Carbonato de Calcio , Carbonatos , Fuerza Compresiva , Urea , Agua
5.
Biochem Biophys Res Commun ; 611: 165-171, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35489203

RESUMEN

Stress-inducible transcription factor ATF4 is essential for survival and identity of ß-cell during stress conditions. However, the physiological role of ATF4 in ß-cell function is not yet completely understood. To understand the role of ATF4 in glucose-stimulated insulin secretion (GSIS), ß-cell-specific Atf4 knockout (ßAtf4KO) mice were phenotypically characterized. Insulin secretion and mechanistic analyses were performed using islets from control Atf4f/f and ßAtf4KO mice to assess key regulators for triggering and amplifying signals for GSIS. ßAtf4KO mice displayed glucose intolerance due to reduced insulin secretion. Moreover, ßAtf4KO islets exhibited a decrease in both the insulin content and first-phase insulin secretion. The analysis of ßAtf4KO islets showed that ATF4 is required for insulin production and glucose-stimulated ATP and cAMP production. The results demonstrate that ATF4 contributes to the multifaceted regulatory process in GSIS even under stress-free conditions.


Asunto(s)
Intolerancia a la Glucosa , Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Glucosa/metabolismo , Glucosa/farmacología , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados
6.
Cell Chem Biol ; 29(6): 996-1009.e9, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35143772

RESUMEN

Perturbation of endoplasmic reticulum (ER) proteostasis is associated with impairment of cellular function in diverse diseases, especially the function of pancreatic ß cells in type 2 diabetes. Restoration of ER proteostasis by small molecules shows therapeutic promise for type 2 diabetes. Here, using cell-based screening, we report identification of a chemical chaperone-like small molecule, KM04794, that alleviates ER stress. KM04794 prevented protein aggregation and cell death caused by ER stressors and a mutant insulin protein. We also found that this compound increased intracellular and secreted insulin levels in pancreatic ß cells. Chemical biology and biochemical approaches revealed that the compound accumulated in the ER and interacted directly with the ER molecular chaperone BiP. Our data show that this corrector of ER proteostasis can enhance insulin storage and pancreatic ß cell function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Proteostasis , Respuesta de Proteína Desplegada
7.
iScience ; 24(12): 103448, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34877504

RESUMEN

The eIF2α phosphorylation-dependent integrated stress response (ISR) is a signaling pathway that maintains homeostasis in mammalian cells exposed to various stresses. Here, ISR activation in adipocytes improves obesity and diabetes by regulating appetite in a non-cell-autonomous manner. Adipocyte-specific ISR activation using transgenic mice decreases body weight and improves glucose tolerance and obesity induced by a high-fat diet (HFD) via preferential inhibition of HFD intake. The transcriptome analysis of ISR-activated adipose tissue reveals that growth differentiation factor 15 (GDF15) expression is induced by the ISR through the direct regulation of the transcription factors ATF4 and DDIT3. Deficiency in the GDF15 receptor GFRAL abolishes the adipocyte ISR-dependent preferential inhibition of HFD intake and the anti-obesity effects. Pharmacologically, 10(E), 12(Z)-octadecadienoic acid induces ISR-dependent GDF15 expression in adipocytes and decreases the intake of the HFD. Based on our findings the specific activation of the ISR in adipocytes controls the non-cell-autonomous regulation of appetite.

8.
J Hepatobiliary Pancreat Sci ; 28(9): 705-715, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34318615

RESUMEN

BACKGROUND: The aim of this study was to clarify the effectiveness of a new three-dimensional (3D) culture system for hepatocyte-like cells (HLCs) generated from human adipose-derived mesenchymal stem cells (ADSCs). METHODS: Human ADSCs (2 × 104 ) with or without 0.1 mg/mL human recombinant peptide µ-piece per well were seeded in a 96-well U-bottom plate and then our three-step differentiation protocol was applied for 21 days. At each step, cell morphology and gene expression were investigated. Mature hepatocyte functions were evaluated after HLC differentiation. These parameters were compared between 2D- and 3D-cultured HLCs, and, DNA microarray analysis was also performed. Finally, HLCs were transplanted in to CCl4 induced acute liver failure model mice. RESULTS: Two-dimensional-cultured HLCs at day 21 did not have a spindle shape and had formed spheroids after day 6, which gradually increased in size for 3D-cultured HLCs. Definitive endoderm, hepatoblast, and hepatocyte genes showed significantly higher expression in the 3D culture group. Three-dimensional-cultured HLCs also had higher albumin expression, CYP3A4 activity, urea synthesis, and ammonium metabolism, and much higher expression of ion transporter, blood coagulation, and cell communication genes. HLC transplantation improved serum liver function, especially in T-Bil levels, and engrafted into immunodeficient mice with HLA class I positive staining. CONCLUSION: Our new 3D culture protocol is effective to improve hepatocyte functions. Our HLCs might be promising for clinical cell transplantation to treat metabolic disease.


Asunto(s)
Fallo Hepático Agudo , Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Línea Celular , Hepatocitos , Humanos , Ratones
9.
Sci Rep ; 11(1): 13086, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158584

RESUMEN

While ATF6α plays a central role in the endoplasmic reticulum (ER) stress response, the function of its paralogue ATF6ß remains elusive, especially in the central nervous system (CNS). Here, we demonstrate that ATF6ß is highly expressed in the hippocampus of the brain, and specifically regulates the expression of calreticulin (CRT), a molecular chaperone in the ER with a high Ca2+-binding capacity. CRT expression was reduced to ~ 50% in the CNS of Atf6b-/- mice under both normal and ER stress conditions. Analysis using cultured hippocampal neurons revealed that ATF6ß deficiency reduced Ca2+ stores in the ER and enhanced ER stress-induced death. The higher levels of death in Atf6b-/- neurons were recovered by ATF6ß and CRT overexpressions, or by treatment with Ca2+-modulating reagents such as BAPTA-AM and 2-APB, and with an ER stress inhibitor salubrinal. In vivo, kainate-induced neuronal death was enhanced in the hippocampi of Atf6b-/- and Calr+/- mice, and restored by administration of 2-APB and salubrinal. These results suggest that the ATF6ß-CRT axis promotes neuronal survival under ER stress and excitotoxity by improving intracellular Ca2+ homeostasis.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Calreticulina/metabolismo , Neuronas/metabolismo , Animales , Encéfalo , Calreticulina/fisiología , Muerte Celular/fisiología , Supervivencia Celular/fisiología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Femenino , Hipocampo , Homeostasis , Ácido Kaínico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología
10.
Intern Med ; 60(6): 911-915, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33055489

RESUMEN

Collagenofibrotic glomerulopathy or LMX1B-associated nephropathy is a rare disease in which type III collagen accumulates in the glomeruli. We herein report a 64-year-old Japanese woman with an elevated serum creatinine level and persistent proteinuria for 7 years. An electron microscopic study using tannic acid showed curved and frayed collagen fibers within mesangial and subendothelial regions compatible with type III collagen depositions. The distribution of type IV collagen α1-6 chains was normal. Since no pathogenic mutations were identified in the LMX1B gene, she was diagnosed with collagenofibrotic glomerulopathy and treated with angiotensin II receptor blocker and calcium antagonist to control her blood pressure.


Asunto(s)
Enfermedades Renales , Glomérulos Renales , Colágeno Tipo III , Femenino , Mesangio Glomerular , Humanos , Persona de Mediana Edad , Proteinuria
11.
PLoS One ; 15(3): e0229948, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32155190

RESUMEN

The integrated stress response (ISR) is one of the most important cytoprotective mechanisms and is integrated by phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Four eIF2α kinases, heme-regulated inhibitor (HRI), double-stranded RNA-dependent protein kinase (PKR), PKR-like endoplasmic reticulum kinase (PERK), and general control nonderepressible 2 (GCN2), are activated in response to several stress conditions. We previously reported that nanosecond pulsed electric fields (nsPEFs) are a potential therapeutic tool for ISR activation. In this study, we examined which eIF2α kinase is activated by nsPEF treatment. To assess the responsible eIF2α kinase, we used previously established eIF2α kinase quadruple knockout (4KO) and single eIF2α kinase-rescued 4KO mouse embryonic fibroblast (MEF) cells. nsPEFs 70 ns in duration with 30 kV/cm electric fields caused eIF2α phosphorylation in wild-type (WT) MEF cells. On the other hand, nsPEF-induced eIF2α phosphorylation was completely abolished in 4KO MEF cells and was recovered by HRI overexpression. CM-H2DCFDA staining showed that nsPEFs generated reactive oxygen species (ROS), which activated HRI. nsPEF-induced eIF2α phosphorylation was blocked by treatment with the ROS scavenger N-acetyl-L-cysteine (NAC). Our results indicate that the eIF2α kinase HRI is responsible for nsPEF-induced ISR activation and is activated by nsPEF-generated ROS.


Asunto(s)
Electricidad/efectos adversos , Fibroblastos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/fisiología , Acetilcisteína/farmacología , Animales , Línea Celular , Técnicas de Inactivación de Genes , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Estrés Fisiológico/efectos de los fármacos , eIF-2 Quinasa/genética
12.
Life Sci Alliance ; 3(3)2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32029570

RESUMEN

Mitochondria play a central role in the function of brown adipocytes (BAs). Although mitochondrial biogenesis, which is indispensable for thermogenesis, is regulated by coordination between nuclear DNA transcription and mitochondrial DNA transcription, the molecular mechanisms of mitochondrial development during BA differentiation are largely unknown. Here, we show the importance of the ER-resident sensor PKR-like ER kinase (PERK) in the mitochondrial thermogenesis of brown adipose tissue. During BA differentiation, PERK is physiologically phosphorylated independently of the ER stress. This PERK phosphorylation induces transcriptional activation by GA-binding protein transcription factor α subunit (GABPα), which is required for mitochondrial inner membrane protein biogenesis, and this novel role of PERK is involved in maintaining the body temperatures of mice during cold exposure. Our findings demonstrate that mitochondrial development regulated by the PERK-GABPα axis is indispensable for thermogenesis in brown adipose tissue.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Retículo Endoplásmico/metabolismo , eIF-2 Quinasa/metabolismo , Adipocitos Marrones/metabolismo , Animales , Diferenciación Celular/genética , ADN Mitocondrial/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Mitocondrias/metabolismo , Biogénesis de Organelos , Fosforilación , Transducción de Señal/genética , Termogénesis/fisiología , Transcripción Genética/genética
13.
Elife ; 82019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31843052

RESUMEN

The endoplasmic reticulum (ER) is responsible for folding secretory and membrane proteins, but disturbed ER proteostasis may lead to protein aggregation and subsequent cellular and clinical pathologies. Chemical chaperones have recently emerged as a potential therapeutic approach for ER stress-related diseases. Here, we identified 2-phenylimidazo[2,1-b]benzothiazole derivatives (IBTs) as chemical chaperones in a cell-based high-throughput screen. Biochemical and chemical biology approaches revealed that IBT21 directly binds to unfolded or misfolded proteins and inhibits protein aggregation. Finally, IBT21 prevented cell death caused by chemically induced ER stress and by a proteotoxin, an aggression-prone prion protein. Taken together, our data show the promise of IBTs as potent chemical chaperones that can ameliorate diseases resulting from protein aggregation under ER stress.


Asunto(s)
Benzotiazoles/farmacología , Retículo Endoplásmico/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Agregación Patológica de Proteínas/prevención & control , Benzotiazoles/química , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HEK293 , Humanos , Proteínas Priónicas/metabolismo , Proteostasis/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
14.
Clin Calcium ; 28(11): 1548-1553, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-30374012

RESUMEN

Organs do not independently coordinate their metabolic activity:close communication between different organ systems is essential to regulate metabolism effectively. In recent years, the unfolded protein response(UPR), which is an adaptive mechanism to decrease the amount of unfolded or misfolded proteins in the ER, has been found to regulate metabolic function not only at the cellular level but also at the whole-organism level by way of inter-organ communications. This manuscript will present the most recent findings on the role of the UPR in inter-organ metabolic networks.


Asunto(s)
Retículo Endoplásmico/metabolismo , Redes y Vías Metabólicas , Respuesta de Proteína Desplegada , Humanos , Proteínas/química
15.
Sci Rep ; 8(1): 773, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335505

RESUMEN

As chondrocytes are highly secretory and they experience a variety of stresses, physiological unfolded protein response (UPR) signalling is essential for extracellular matrix (ECM) secretion and chondrogenesis. In the three branches of the UPR pathway, PERK governs the translational attenuation and transcriptional upregulation of amino acid and redox metabolism and induction of apoptosis. It was previously demonstrated that a defect of the PERK branch of the UPR signalling pathway causes the accumulation of unfolded proteins, leading to cell death without perturbing endoplasmic reticulum (ER)-to-Golgi transport in pancreatic ß cells. However, little is known about the role of PERK in chondrocytes. In this study, we found that PERK signalling is activated in chondrocytes, and inhibition of PERK reduces collagen secretion despite causing excessive collagen synthesis in the ER. Perk -/- mice displayed reduced collagen in articular cartilage but no differences in chondrocyte proliferation or apoptosis compared to the findings in wild-type mice. PERK inhibition increases misfolded protein levels in the ER, which largely hinder ER-to-Golgi transport. These results suggest that the translational control mediated by PERK is a critical determinant of ECM secretion in chondrocytes.


Asunto(s)
Condrocitos/metabolismo , Colágeno/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Línea Celular , Ratones , Ratones Noqueados , eIF-2 Quinasa/deficiencia
16.
Nat Commun ; 8(1): 2079, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29233981

RESUMEN

Understanding the molecular mechanisms regulating beige adipocyte formation may lead to the development of new therapies to combat obesity. Here, we report a miRNA-based autocrine regulatory pathway that controls differentiation of preadipocytes into beige adipocytes. We identify miR-327 as one of the most downregulated miRNAs targeting growth factors in the stromal-vascular fraction (SVF) under conditions that promote white adipose tissue (WAT) browning in mice. Gain- and loss-of-function experiments reveal that miR-327 targets FGF10 to prevent beige adipocyte differentiation. Pharmacological and physiological ß-adrenergic stimulation upregulates FGF10 levels and promotes preadipocyte differentiation into beige adipocytes. In vivo local delivery of miR-327 to WATs significantly compromises the beige phenotype and thermogenesis. Contrarily, systemic inhibition of miR-327 in mice induces browning and increases whole-body metabolic rate under thermoneutral conditions. Our data provide mechanistic insight into an autocrine regulatory signaling loop that regulates beige adipocyte formation and suggests that the miR-327-FGF10-FGFR2 signaling axis may be a therapeutic targets for treatment of obesity and metabolic diseases.


Asunto(s)
Tejido Adiposo Beige/fisiología , Tejido Adiposo Blanco/fisiología , Comunicación Autocrina/genética , Factor 10 de Crecimiento de Fibroblastos/genética , MicroARNs/metabolismo , Adipocitos/fisiología , Tejido Adiposo Beige/citología , Tejido Adiposo Beige/efectos de los fármacos , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Abajo , Metabolismo Energético/fisiología , Femenino , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , MicroARNs/genética , Modelos Animales , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , ARN Interferente Pequeño/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/fisiología
17.
PLoS One ; 12(6): e0179955, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28644884

RESUMEN

BACKGROUND: Formation of 43S and 48S preinitiation complexes plays an important role in muscle protein synthesis. There is no muscle-wasting mouse model caused by a repressed 43S preinitiation complex assembly. OBJECTIVE: The aim of the present study was to develop a convenient mouse model of skeletal muscle wasting with repressed 43S preinitiation complex assembly. MATERIAL AND METHODS: A ligand-activatable PERK derivative Fv2E-PERK causes the phosphorylation of eukaryotic initiation factor 2α (eIF2α), which inhibits 43S preinitiation complex assembly. Thus, muscle atrophic phenotypes, intracellular signaling pathways, and intracellular free amino acid profiles were investigated in human skeletal muscle α-actin (HSA) promoter-driven Fv2E-PERK transgenic (Tg) mice. RESULTS: HSA-Fv2E-PERK Tg mice treated with the artificial dimerizer AP20187 phosphorylates eIF2α in skeletal muscles and leads to severe muscle atrophy within a few days of ligand injection. Muscle atrophy was accompanied by a counter regulatory activation of mTORC1 signaling. Moreover, intracellular free amino acid levels were distinctively altered in the skeletal muscles of HSA-Fv2E-PERK Tg mice. CONCLUSIONS: As a novel model of muscle wasting, HSA-Fv2E-PERK Tg mice provide a convenient tool for studying the pathogenesis of muscle loss and for assessing putative therapeutics.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Transgénicos , Músculo Esquelético , Atrofia Muscular , Actinas/genética , Actinas/metabolismo , Aminoácidos/metabolismo , Animales , Homeostasis/fisiología , Humanos , Espacio Intracelular/metabolismo , Ligandos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Complejos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Tacrolimus/análogos & derivados , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
18.
J Atheroscler Thromb ; 24(12): 1215-1230, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28502917

RESUMEN

AIM: Accelerated thrombin action is associated with insulin resistance. It is known that upon activation by binding to dermatan sulfate proteoglycans, heparin cofactor Ⅱ(HCⅡ) inactivates thrombin in tissues. Because HCⅡ may be involved in glucose metabolism, we investigated the relationship between plasma HCⅡ activity and insulin resistance. METHODS AND RESULTS: In a clinical study, statistical analysis was performed to examine the relationships between plasma HCⅡ activity, glycosylated hemoglobin (HbA1c), fasting plasma glucose (FPG), and homeostasis model assessment-insulin resistance (HOMA-IR) in elderly Japanese individuals with lifestyle-related diseases. Multiple regression analysis showed significant inverse relationships between plasma HCⅡ activity and HbA1c (p=0.014), FPG (p=0.007), and HOMA-IR (p= 0.041) in elderly Japanese subjects. In an animal study, HCⅡ+/+ mice and HCⅡ+/- mice were fed with a normal diet or high-fat diet (HFD) until 25 weeks of age. HFD-fed HCⅡ+/- mice exhibited larger adipocyte size, higher FPG level, hyperinsulinemia, compared to HFD-fed HCⅡ+/+ mice. In addition, HFD-fed HCⅡ+/- mice exhibited augmented expression of monocyte chemoattractant protein-1 and tumor necrosis factor, and impaired phosphorylation of the serine/threonine kinase Akt and AMP-activated protein kinase in adipose tissue compared to HFD-fed HCⅡ+/+ mice. The expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase was also enhanced in the hepatic tissues of HFD-fed HCⅡ+/- mice. CONCLUSIONS: The present studies provide evidence to support the idea that HCⅡ plays an important role in the maintenance of glucose homeostasis by regulating insulin sensitivity in both humans and mice. Stimulators of HCⅡ production may serve as novel therapeutic tools for the treatment of type 2 diabetes.


Asunto(s)
Glucemia/metabolismo , Cofactor II de Heparina/fisiología , Homeostasis , Resistencia a la Insulina , Insulina/sangre , Animales , Biomarcadores/sangre , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Hiperglucemia/sangre , Hiperglucemia/etiología , Hiperglucemia/patología , Hiperinsulinismo/sangre , Hiperinsulinismo/etiología , Hiperinsulinismo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Obesidad/complicaciones , Pronóstico
19.
Sci Rep ; 6: 32886, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27633668

RESUMEN

The integrated stress response (ISR) is a cytoprotective pathway initiated upon phosphorylation of the eukaryotic translation initiation factor 2 (eIF2α) residue designated serine-51, which is critical for translational control in response to various stress conditions. Four eIF2α kinases, namely heme-regulated inhibitor (HRI), protein kinase R (PKR), PKR-like endoplasmic reticulum kinase, (PERK) and general control non-depressible 2 (GCN2), have been identified thus far, and they are known to be activated by heme depletion, viral infection, endoplasmic reticulum stress, and amino acid starvation, respectively. Because eIF2α is phosphorylated under various stress conditions, the existence of an additional eIF2α kinase has been suggested. To validate the existence of the unidentified eIF2α kinase, we constructed an eIF2α kinase quadruple knockout cells (4KO cells) in which the four known eIF2α kinase genes were deleted using the CRISPR/Cas9-mediated genome editing. Phosphorylation of eIF2α was completely abolished in the 4KO cells by various stress stimulations. Our data suggests that the four known eIF2α kinases are sufficient for ISR and that there are no additional eIF2α kinases in vertebrates.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Sistemas CRISPR-Cas , Caenorhabditis elegans , Línea Celular , Drosophila melanogaster , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Edición Génica , Ratones , Fosforilación , Filogenia
20.
PLoS One ; 11(1): e0147143, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26766570

RESUMEN

There are two independent serotonin (5-HT) systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.


Asunto(s)
Dieta Alta en Grasa , Obesidad/etiología , Obesidad/metabolismo , Serotonina/metabolismo , Tejido Adiposo/metabolismo , Adiposidad , Animales , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Metabolismo Energético , Expresión Génica , Masculino , Ratones , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , ARN Mensajero/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...