Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Mol Neurobiol ; 60(1): 171-182, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36251233

RESUMEN

We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) in the ventromedial hypothalamus (VMH) enhances feeding during the dark cycle and after fasting, and inhibits feeding during the light cycle. On the other hand, galanin is highly expressed in the hypothalamus and has been reported to be involved in feeding regulation. In this study, we investigated the involvement of the VMH-PACAP to the dorsomedial hypothalamus (DMH)-galanin signaling in the regulation of feeding. Galanin expression in the hypothalamus was significantly increased with fasting, but this increment was canceled in PACAP-knockout (KO) mice. Furthermore, overexpression of PACAP in the VMH increased the expression of galanin, while knockdown (KD) of PACAP in the VMH decreased the expression of galanin, indicating that the expression of galanin in the hypothalamus might be regulated by PACAP in the VMH. Therefore, we expressed the synaptophysin-EGFP fusion protein (SypEGFP) in PACAP neurons in the VMH and visualized the neural projection to the hypothalamic region where galanin was highly expressed. A strong synaptophysin-EGFP signal was observed in the DMH, indicating that PACAP-expressing cells of the VMH projected to the DMH. Furthermore, galanin immunostaining in the DMH showed that galanin expression was weak in PACAP-KO mice. When galanin in the DMH was knocked down, food intake during the dark cycle and after fasting was decreased, and food intake during the light cycle was increased, as in PACAP-KO mice. These results indicated that galanin in the DMH may regulate the feeding downstream of PACAP in the VMH.


Asunto(s)
Hipotálamo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Ratones , Regulación del Apetito , Galanina/metabolismo , Hipotálamo/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Sinaptofisina/metabolismo
2.
Biomolecules ; 12(12)2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36551287

RESUMEN

We have previously shown that spinal pituitary adenylate cyclase-activating polypeptide (PACAP)/PACAP type 1 (PAC1) receptor signaling triggered long-lasting nociceptive behaviors through astroglial activation in mice. Since astrocyte-neuron lactate shuttle (ANLS) could be essential for long-term synaptic facilitation, we aimed to elucidate a possible involvement of spinal ANLS in the development of the PACAP/PAC1 receptor-induced nociceptive behaviors. A single intrathecal administration of PACAP induced short-term spontaneous aversive behaviors, followed by long-lasting mechanical allodynia in mice. These nociceptive behaviors were inhibited by 1,4-dideoxy-1,4-imino-d-arabinitol (DAB), an inhibitor of glycogenolysis, and this inhibition was reversed by simultaneous L-lactate application. In the cultured spinal astrocytes, the PACAP-evoked glycogenolysis and L-lactate secretion were inhibited by DAB. In addition, a protein kinase C (PKC) inhibitor attenuated the PACAP-induced nociceptive behaviors as well as the PACAP-evoked glycogenolysis and L-lactate secretion. Finally, an inhibitor for the monocarboxylate transporters blocked the L-lactate secretion from the spinal astrocytes and inhibited the PACAP- and spinal nerve ligation-induced nociceptive behaviors. These results suggested that spinal PAC1 receptor-PKC-ANLS signaling contributed to the PACAP-induced nociceptive behaviors. This signaling system could be involved in the peripheral nerve injury-induced pain-like behaviors.


Asunto(s)
Astrocitos , Ácido Láctico , Neuronas , Nocicepción , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Animales , Ratones , Astrocitos/metabolismo , Ácido Láctico/metabolismo , Neuronas/metabolismo , Nocicepción/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Transporte Biológico
3.
Biochem Biophys Res Commun ; 631: 146-151, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36194909

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a highly conserved pleiotropic neuropeptide, implicated in emotional stress responses and anxiety-related disorders. Here, we examined whether our recently developed small-molecule non-peptide PACAP receptor antagonists could ameliorate anxiety-like behaviors induced by acute restraint stress in mice. The antagonists PA-9 and its derivative PA-915 improved anxiety-like behaviors in mice subjected to restraint stress. An anxiolytic effect was observed with single acute dose, suggesting their fast-acting properties. PA-915 demonstrated a statistically significant anxiolytic effect whereas fluoxetine did not. These results indicate the potential of PAC1 antagonists as a novel treatment for anxiety.


Asunto(s)
Ansiolíticos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Fluoxetina , Ratones , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/uso terapéutico , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria
4.
Sci Rep ; 12(1): 12604, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871167

RESUMEN

Fractalkine is one of the CX3C chemokine family, and it is widely expressed in the brain including the hypothalamus. In the brain, fractalkine is expressed in neurons and binds to a CX3C chemokine receptor 1 (CX3CR1) in microglia. The hypothalamus regulates energy homeostasis of which dysregulation is associated with obesity. Therefore, we examined whether fractalkine-CX3CR1 signalling involved in regulating food intake and hypothalamic inflammation associated with obesity pathogenesis. In the present study, fractalkine significantly reduced food intake induced by several experimental stimuli and significantly increased brain-derived neurotrophic factor (BDNF) mRNA expression in the hypothalamus. Moreover, tyrosine receptor kinase B (TrkB) antagonist impaired fractalkine-induced anorexigenic actions. In addition, compared with wild-type mice, CX3CR1-deficient mice showed a significant increase in food intake and a significant decrease in BDNF mRNA expression in the hypothalamus. Mice fed a high-fat diet (HFD) for 16 weeks showed hypothalamic inflammation and reduced fractalkine mRNA expression in the hypothalamus. Intracerebroventricular administration of fractalkine significantly suppressed HFD-induced hypothalamic inflammation in mice. HFD intake for 4 weeks caused hypothalamic inflammation in CX3CR1-deficient mice, but not in wild-type mice. These findings suggest that fractalkine-CX3CR1 signalling induces anorexigenic actions via activation of the BDNF-TrkB pathway and suppresses HFD-induced hypothalamic inflammation in mice.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Quimiocina CX3CL1 , Animales , Antiinflamatorios , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Obesidad/metabolismo , ARN Mensajero
5.
Eur J Med Chem ; 231: 114160, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35124531

RESUMEN

Since PA-8 (5-(4-(Allyloxy)-3-methoxyphenyl)-2-amino-5,8-dihydro-3H,6H-pyrido[2,3-d]pyrimidine-4,7-dione) was recently identified as a novel small-molecule antagonist of the pituitary adenylate cyclase-activating polypeptide (PACAP) type I (PAC1) receptor, a series of pyrido[2,3-d]pyrimidine derivatives have been designed, synthesized and subsequently evaluated for antagonistic activity on the PAC1 receptor. In this study, we synthesized 21 derivatives based on the PA-8 structure. Among them, the compound 2o (2-Amino-5-(3-trifluoromethoxy-phenyl)-5,8-dihydro-3H,6H-pyrido[2,3-d]pyrimidine-4,7-dione) showed more potent antagonistic activities than PA-8. Intrathecal (i.t.) injection of 2o blocked the induction of PACAP-induced aversive behaviors and mechanical allodynia in mice, and the effects were more potent than those of PA-8. A single i.t. injection of 2o also inhibited spinal nerve ligation (SNL)-induced mechanical allodynia. Repeated intraperitoneal administration of 2o gradually reduced the SNL-induced mechanical allodynia, and this effect appeared earlier than for PA-8. In addition, 2o exhibited a favorable ADME and pharmacokinetics profiles. These results suggest that 2o may become an analgesic for the treatment of neuropathic pain.


Asunto(s)
Neuralgia , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Animales , Hiperalgesia , Ratones , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Pirimidinas/farmacología
6.
J Pharmacol Sci ; 148(1): 108-115, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34924114

RESUMEN

Brain glycogen metabolism is known to be involved in the learning and memory processes. Protein targeting to glycogen (PTG) is a crucial molecule for glycogenesis, and its expression level is shown to be increased in the dorsal hippocampus during fear memory acquisition and recall, suggesting that PTG may contribute to the memory process. However, its detailed role in the dorsal hippocampus remains unclear. Therefore, we knocked down the expression of PTG in the dorsal hippocampus and attempted to analyze its function behaviorally. PTG expression was found to be enriched in astrocytes. Furthermore, short hairpin RNA against PTG suppressed the expression of PTG in astrocytes. Mice with knockdown of PTG in the dorsal hippocampus showed suppressed alternation behavior in the Y-maze test and reduced memory recall at the first hour after acquisition in the passive avoidance test. Knockdown of mouse dorsal hippocampal astrocyte-specific PTG also impaired working memory in the Y-maze test. GluR1, GluR2, and NR2a subunits expressions were significantly down-regulated in the dorsal hippocampus of mice in which PTG was knocked down. These results indicate that PTG in the dorsal hippocampal astrocytes may contribute to working and short-term memories by maintaining the expression of glutamate receptor subunits.


Asunto(s)
Expresión Génica , Glucógeno/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Memoria a Corto Plazo/fisiología , Receptores AMPA/genética , Receptores AMPA/metabolismo , Animales , Astrocitos/metabolismo , Hipocampo/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones Endogámicos
7.
Front Pharmacol ; 12: 699026, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489696

RESUMEN

The free fatty acid receptor 1 (FFAR1) is suggested to function as a G protein-coupled receptor (GPR40) for medium-to-long-chain free fatty acids. Previous studies on the expression of FFAR1 revealed that the nigrostriatal region is one of the areas which express abundant FFAR1 mRNA/protein in the central nervous system (CNS). However, the role of FFAR1 in the CNS has been still largely unclarified. Here, we examined a possible functional role of FFAR1 in the control of extracellular concentrations of striatal monoamines and cocaine-induced locomotor activity. Microdialysis analysis revealed that the basal level of extracellular dopamine (DA) was significantly elevated, while the basal serotonin (5-HT) level tended to be reduced in the striatum of FFAR1 knockout (-/-) mice. Interestingly, local application of a FFAR1 agonist, GW9508, markedly augmented the striatal 5-HT release in FFAR1 wild-type (+/+) mice, whereas topical application of a FFAR1 antagonist, GW1100, significantly reduced the 5-HT release. However, the enhanced 5-HT release was completely lost in -/- mice. Although acute administration of cocaine enhanced the locomotor activity in both +/+ and -/- mice, the magnitude of the enhancement was significantly reduced in -/- mice. In addition, intraperitoneal injection of GW1100 significantly decreased the cocaine-induced locomotor enhancement. These results suggest that FFAR1 has a facilitatory role in striatal 5-HT release, and the evoked 5-HT release might contribute to enhance cocaine-induced locomotor activity.

8.
Pharmacol Rep ; 73(4): 1109-1121, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33835466

RESUMEN

BACKGROUND: Pituitary adenylate cyclase-activating polypeptide (PACAP) plays an essential role in the modulation of astrocyte functions. Although lactate secretion from astrocytes contributes to many forms of neuronal plasticity in the central nervous system, including fear learning and memory, the role of PACAP in lactate secretion from astrocytes is unclear. METHODS: The amygdala and hippocampus of PACAP (+ / +) and PACAP (-/-) mice were acquired 1 h after memory acquisition and recall in the passive avoidance test. The concentration of glycogen and lactate in these regions was measured. The concentration of lactate in the hippocampus's extracellular fluid was also measured by microdialysis during memory acquisition or intracerebroventricular administration of PACAP. RESULTS: We observed that memory acquisition caused a significant decrease in glycogen concentration and increased lactate concentration in the PACAP (+ / +) mice's hippocampus. However, memory acquisition did not increase in the lactate concentration in PACAP (-/-) mice's hippocampus. Further, memory retrieval evoked lactate production in the amygdala and the hippocampus of PACAP (+ / +) mice. Still, there was no significant increase in lactate concentration in the same regions of PACAP (-/-) mice. In vivo microdialysis in rats revealed that the hippocampus's extracellular lactate concentration increased after a single PACAP intracerebroventricular injection. Additionally, the hippocampus's extracellular lactate concentration increased with the memory acquisition in PACAP (+ / +) mice, but not in PACAP (-/-) mice. CONCLUSIONS: PACAP may enhance lactate production and secretion in astrocytes during the acquisition and recall of fear memories.


Asunto(s)
Astrocitos/metabolismo , Miedo/fisiología , Ácido Láctico/metabolismo , Memoria/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Animales , Astrocitos/fisiología , Glucógeno/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Ratones , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
9.
Curr Mol Pharmacol ; 14(2): 115-122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32329707

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is a common psychological disorder worldwide. However, one-third of patients with MDD are resistant to the present anti-depressant medicine, which regulates monoamine contents in the brain. Thus, another drug target is strongly required. Much evidence strongly suggests that sirtuin1, which is the key factor in regulating the mitochondrial activity, may be implicated in MDD. OBJECTIVE: Since it is suggested that royal jelly (RJ) ameliorated depressive-like behavior and affected mitochondrial activity in mice, we hypothesized that RJ could be an alternative medicine against MDD, which acts via sirtuin1 signaling to improve mitochondrial activity. METHODS: In the present study, we applied a mouse model of MDD to investigate the effect of RJ on the depressive-like behavior and the sirtuin1 signaling on mitochondrial activity. RESULTS: Our results indicated that either the oral administration of RJ for 12 days or single intracerebroventricular (i.c.v.) injection decreased the duration of immobility in the tail suspension test, which suggested that RJ had an antidepressant-like effect. Moreover, sirtuin1 protein expression increased in mice following RJ treatment in the amygdala region, but not in the other brain regions. Similarly, the expressions of oxidative phosphorylation (OXPHOS) related proteins increased in the amygdala regions, but not in the hippocampal regions. CONCLUSION: The increase of sirtuin1 and OXPHOS protein expression may at least in part contribute to the antidepressant-like effect of the RJ pathway, and RJ may have the potential to be a novel anti-depressant drug.


Asunto(s)
Antidepresivos/química , Trastorno Depresivo Mayor/tratamiento farmacológico , Ácidos Grasos/química , Sirtuina 1/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Antidepresivos/farmacología , Conducta Animal , Ácidos Grasos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Histona Desacetilasas/metabolismo , Humanos , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Proteómica , Transducción de Señal , Sirtuina 1/genética
10.
Mol Neurobiol ; 57(4): 2101-2114, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31927724

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) is abundantly expressed in the hypothalamus and contributes to hypothalamic functions, including appetite regulation. Although food intake is suggested to be decreased in PACAP (-/-) mice, the detailed mechanisms are still being discussed. We sought to investigate this link. The food consumption at 8 h after refeeding in the (-/-) mice who had fasted for 2 days was significantly lower than in the PACAP (+/+) mice. The nocturnal and daily food intake of (-/-) mice was significantly lower than those of (+/+) mice, but the diurnal food intake showed a tendency to increase. mRNA expression levels of agouti-related peptide (AgRP) were decreased, but those of proopiomelanocortin (POMC) were increased in the hypothalamus of (-/-) mice 4 h after refeeding. Furthermore, intracerebroventricular administration of a PACAP receptor antagonist, PACAP6-38 (1 nmol/4 µL/mouse), decreased food intake and body weight 1, 2, and 4 h after refeeding, as well as expression levels of AgRP at 4 h after refeeding in (+/+) mice. The selective overexpression of PACAP by the infection of an adeno-associated virus in the ventromedial hypothalamus (VMH) resulted in an increase in food intake and AgRP expression in the nocturnal period in addition to the increased food intake at 8 h after refeeding. These results suggest that food intake behavior in mice is triggered by the increase in PACAP expression in the VMH via modulation of AgRP expression in the hypothalamus, pointing to PACAP inhibition as a potential strategy for the development of anti-obesity drugs.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Conducta Alimentaria , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Proteína Relacionada con Agouti/genética , Animales , Ritmo Circadiano , Ayuno , Ratones , Neuropéptidos/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/deficiencia , Proopiomelanocortina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...