Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 31(5): 817-825, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538915

RESUMEN

The anticodon modifications of transfer RNAs (tRNAs) finetune the codon recognition on the ribosome for accurate translation. Bacteria and archaea utilize the modified cytidines, lysidine (L) and agmatidine (agm2C), respectively, in the anticodon of tRNAIle to decipher AUA codon. L and agm2C contain long side chains with polar termini, but their functions remain elusive. Here we report the cryogenic electron microscopy structures of tRNAsIle recognizing the AUA codon on the ribosome. Both modifications interact with the third adenine of the codon via a unique C-A geometry. The side chains extend toward 3' direction of the mRNA, and the polar termini form hydrogen bonds with 2'-OH of the residue 3'-adjacent to the AUA codon. Biochemical analyses demonstrated that AUA decoding is facilitated by the additional interaction between the polar termini of the modified cytidines and 2'-OH of the fourth mRNA residue. We also visualized cyclic N6-threonylcarbamoyladenosine (ct6A), another tRNA modification, and revealed a molecular basis how ct6A contributes to efficient decoding.


Asunto(s)
Anticodón , Microscopía por Crioelectrón , ARN de Transferencia de Isoleucina , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/metabolismo , ARN de Transferencia de Isoleucina/genética , Anticodón/química , Anticodón/metabolismo , Ribosomas/metabolismo , Ribosomas/química , Conformación de Ácido Nucleico , Modelos Moleculares , Codón/genética , Lisina/metabolismo , Lisina/química , Lisina/análogos & derivados , Citidina/análogos & derivados , Citidina/química , Citidina/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , Biosíntesis de Proteínas , Nucleósidos de Pirimidina
2.
Nat Commun ; 14(1): 2704, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198183

RESUMEN

In the early stage of bacterial translation, peptidyl-tRNAs frequently dissociate from the ribosome (pep-tRNA drop-off) and are recycled by peptidyl-tRNA hydrolase. Here, we establish a highly sensitive method for profiling of pep-tRNAs using mass spectrometry, and successfully detect a large number of nascent peptides from pep-tRNAs accumulated in Escherichia coli pthts strain. Based on molecular mass analysis, we found about 20% of the peptides bear single amino-acid substitutions of the N-terminal sequences of E. coli ORFs. Detailed analysis of individual pep-tRNAs and reporter assay revealed that most of the substitutions take place at the C-terminal drop-off site and that the miscoded pep-tRNAs rarely participate in the next round of elongation but dissociate from the ribosome. These findings suggest that pep-tRNA drop-off is an active mechanism by which the ribosome rejects miscoded pep-tRNAs in the early elongation, thereby contributing to quality control of protein synthesis after peptide bond formation.


Asunto(s)
Escherichia coli , Aminoacil-ARN de Transferencia , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/química , Péptidos/química , Control de Calidad , Biosíntesis de Proteínas
3.
Nature ; 605(7909): 372-379, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35477761

RESUMEN

Post-transcriptional modifications have critical roles in tRNA stability and function1-4. In thermophiles, tRNAs are heavily modified to maintain their thermal stability under extreme growth temperatures5,6. Here we identified 2'-phosphouridine (Up) at position 47 of tRNAs from thermophilic archaea. Up47 confers thermal stability and nuclease resistance to tRNAs. Atomic structures of native archaeal tRNA showed a unique metastable core structure stabilized by Up47. The 2'-phosphate of Up47 protrudes from the tRNA core and prevents backbone rotation during thermal denaturation. In addition, we identified the arkI gene, which encodes an archaeal RNA kinase responsible for Up47 formation. Structural studies showed that ArkI has a non-canonical kinase motif surrounded by a positively charged patch for tRNA binding. A knockout strain of arkI grew slowly at high temperatures and exhibited a synthetic growth defect when a second tRNA-modifying enzyme was depleted. We also identified an archaeal homologue of KptA as an eraser that efficiently dephosphorylates Up47 in vitro and in vivo. Taken together, our findings show that Up47 is a reversible RNA modification mediated by ArkI and KptA that fine-tunes the structural rigidity of tRNAs under extreme environmental conditions.


Asunto(s)
Archaea , ARN de Transferencia , Termotolerancia , Archaea/genética , Ambientes Extremos , Fosforilación , Procesamiento Postranscripcional del ARN , ARN de Archaea/química , ARN de Archaea/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Uridina
4.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34768885

RESUMEN

Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2'O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.


Asunto(s)
Transferasas Alquil y Aril/genética , ARN de Transferencia/metabolismo , Selenoproteínas/metabolismo , Transferasas Alquil y Aril/metabolismo , Animales , Línea Celular , Cisteína/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Ratones , Neuronas/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Biosíntesis de Proteínas/genética , ARN de Transferencia/genética , Ribosomas/metabolismo , Selenio/metabolismo , Selenocisteína/genética , Selenoproteína P/genética , Selenoproteínas/genética
5.
Proc Natl Acad Sci U S A ; 117(34): 20785-20793, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32778592

RESUMEN

Transfer RNA (tRNA) activity is tightly regulated to provide a physiological protein translation, and tRNA chemical modifications control its function in a complex with ribosomes and messenger RNAs (mRNAs). In this regard, the correct hypermodification of position G37 of phenylalanine-tRNA, adjacent to the anticodon, is critical to prevent ribosome frameshifting events. Here we report that the tRNA-yW Synthesizing Protein 2 (TYW2) undergoes promoter hypermethylation-associated transcriptional silencing in human cancer, particularly in colorectal tumors. The epigenetic loss of TYW2 induces guanosine hypomodification in phenylalanine-tRNA, an increase in -1 ribosome frameshift events, and down-regulation of transcripts by mRNA decay, such as of the key cancer gene ROBO1. Importantly, TYW2 epigenetic inactivation is linked to poor overall survival in patients with early-stage colorectal cancer, a finding that could be related to the observed acquisition of enhanced migration properties and epithelial-to-mesenchymal features in the colon cancer cells that harbor TYW2 DNA methylation-associated loss. These findings provide an illustrative example of how epigenetic changes can modify the epitranscriptome and further support a role for tRNA modifications in cancer biology.


Asunto(s)
Neoplasias del Colon/genética , Sistema de Lectura Ribosómico , ARN de Transferencia/genética , Ribosomas/genética , ARNt Metiltransferasas/deficiencia , Adulto , Anciano , Anticodón/genética , Anticodón/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/enzimología , Neoplasias del Colon/metabolismo , Islas de CpG , Epigénesis Genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Conformación de Ácido Nucleico , Fenilalanina/genética , Fenilalanina/metabolismo , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
6.
RNA ; 26(3): 240-250, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31801798

RESUMEN

Transfer RNA (tRNA) is an adaptor molecule indispensable for assigning amino acids to codons on mRNA during protein synthesis. 2-thiouridine (s2U) derivatives in the anticodons (position 34) of tRNAs for glutamate, glutamine, and lysine are post-transcriptional modifications essential for precise and efficient codon recognition in all organisms. s2U34 is introduced either by (i) bacterial MnmA/eukaryote mitochondrial Mtu1 or (ii) eukaryote cytosolic Ncs6/archaeal NcsA, and the latter enzymes possess iron-sulfur (Fe-S) cluster. Here, we report the identification of novel-type MnmA homologs containing three conserved Cys residues, which could support Fe-S cluster binding and catalysis, in a broad range of bacteria, including thermophiles, Cyanobacteria, Mycobacteria, Actinomyces, Clostridium, and Helicobacter Using EPR spectroscopy, we revealed that Thermus thermophilus MnmA (TtMnmA) contains an oxygen-sensitive [4Fe-4S]-type cluster. Efficient in vitro formation of s2U34 in tRNALys and tRNAGln by holo-TtMnmA occurred only under anaerobic conditions. Mutational analysis of TtMnmA suggested that the Fe-S cluster is coordinated by the three conserved Cys residues (Cys105, Cys108, and Cys200), and is essential for its activity. Evolutionary scenarios for the sulfurtransferases, including the Fe-S cluster containing Ncs6/NcsA s2U thiouridylases and several distantly related sulfurtransferases, are proposed.


Asunto(s)
Anticodón/genética , Proteínas de Escherichia coli/genética , ARN de Transferencia/genética , Sulfurtransferasas/genética , Codón/genética , Cianobacterias/genética , Escherichia coli/genética , Ácido Glutámico/genética , Glutamina/genética , Hierro/metabolismo , Lisina/genética , Mycobacterium/genética , Azufre/metabolismo , Sulfurtransferasas/química , Tiouridina/análogos & derivados , Tiouridina/metabolismo
7.
Nat Commun ; 10(1): 5542, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804502

RESUMEN

Transfer (t)RNAs contain a wide variety of post-transcriptional modifications, which play critical roles in tRNA stability and functions. 3-(3-amino-3-carboxypropyl)uridine (acp3U) is a highly conserved modification found in variable- and D-loops of tRNAs. Biogenesis and functions of acp3U have not been extensively investigated. Using a reverse-genetic approach supported by comparative genomics, we find here that the Escherichia coli yfiP gene, which we rename tapT (tRNA aminocarboxypropyltransferase), is responsible for acp3U formation in tRNA. Recombinant TapT synthesizes acp3U at position 47 of tRNAs in the presence of S-adenosylmethionine. Biochemical experiments reveal that acp3U47 confers thermal stability on tRNA. Curiously, the ΔtapT strain exhibits genome instability under continuous heat stress. We also find that the human homologs of tapT, DTWD1 and DTWD2, are responsible for acp3U formation at positions 20 and 20a of tRNAs, respectively. Double knockout cells of DTWD1 and DTWD2 exhibit growth retardation, indicating that acp3U is physiologically important in mammals.


Asunto(s)
Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN de Transferencia/química , Uridina/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Estructura Molecular , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Uridina/genética , Uridina/metabolismo
8.
Nat Chem Biol ; 14(11): 1010-1020, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150682

RESUMEN

Modification of tRNA anticodons plays a critical role in ensuring accurate translation. N4-acetylcytidine (ac4C) is present at the anticodon first position (position 34) of bacterial elongator tRNAMet. Herein, we identified Bacillus subtilis ylbM (renamed tmcAL) as a novel gene responsible for ac4C34 formation. Unlike general acetyltransferases that use acetyl-CoA, TmcAL activates an acetate ion to form acetyladenylate and then catalyzes ac4C34 formation through a mechanism similar to tRNA aminoacylation. The crystal structure of TmcAL with an ATP analog reveals the molecular basis of ac4C34 formation. The ΔtmcAL strain displayed a cold-sensitive phenotype and a strong genetic interaction with tilS that encodes the enzyme responsible for synthesizing lysidine (L) at position 34 of tRNAIle to facilitate AUA decoding. Mistranslation of the AUA codon as Met in the ΔtmcAL strain upon tilS repression suggests that ac4C34 modification of tRNAMet and L34 modification of tRNAIle act cooperatively to prevent misdecoding of the AUA codon.


Asunto(s)
Acetatos/química , Bacillus subtilis/genética , ARN de Transferencia/química , Adenosina Trifosfato/química , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Codón de Terminación , Cristalografía por Rayos X , Análisis Mutacional de ADN , Escherichia coli/metabolismo , Mutación , Mycoplasma/metabolismo , Conformación de Ácido Nucleico , Fenotipo , Mutación Puntual , Biosíntesis de Proteínas , Dominios Proteicos , Proteínas Recombinantes/metabolismo
9.
Nat Commun ; 9(1): 1875, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29760464

RESUMEN

It has been generally thought that tRNA modifications are stable and static, and their frequencies are rarely regulated. N6-threonylcarbamoyladenosine (t6A) occurs at position 37 of five mitochondrial (mt-)tRNA species. We show that YRDC and OSGEPL1 are responsible for t6A37 formation, utilizing L-threonine, ATP, and CO2/bicarbonate as substrates. OSGEPL1-knockout cells exhibit respiratory defects and reduced mitochondrial translation. We find low level of t6A37 in mutant mt-tRNA isolated from the MERRF-like patient's cells, indicating that lack of t6A37 results in pathological consequences. Kinetic measurements of t6A37 formation reveal that the Km value of CO2/bicarbonate is extremely high (31 mM), suggesting that CO2/bicarbonate is a rate-limiting factor for t6A37 formation. Consistent with this, we observe a low frequency of t6A37 in mt-tRNAs isolated from human cells cultured without bicarbonate. These findings indicate that t6A37 is regulated by sensing intracellular CO2/bicarbonate concentration, implying that mitochondrial translation is modulated in a codon-specific manner under physiological conditions.


Asunto(s)
Bicarbonatos/farmacología , Dióxido de Carbono/farmacología , Síndrome MERRF/metabolismo , Mitocondrias/metabolismo , Proteínas/metabolismo , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN de Transferencia/química , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Proteínas Reguladoras de la Apoptosis , Emparejamiento Base , Bicarbonatos/metabolismo , Sistemas CRISPR-Cas , Dióxido de Carbono/metabolismo , Línea Celular , Respiración de la Célula , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Eliminación de Gen , Células HEK293 , Células HT29 , Células HeLa , Humanos , Síndrome MERRF/genética , Síndrome MERRF/patología , Mitocondrias/patología , Modelos Biológicos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/patología , Conformación de Ácido Nucleico , Proteínas/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
10.
Nat Struct Mol Biol ; 24(9): 778-782, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28783151

RESUMEN

The genetic code is not frozen but still evolving, which can result in the acquisition of 'dialectal' codons that deviate from the universal genetic code. RNA modifications in the anticodon region of tRNAs play a critical role in establishing such non-universal genetic codes. In echinoderm mitochondria, the AAA codon specifies asparagine instead of lysine. By analyzing mitochondrial (mt-) tRNALys isolated from the sea urchin (Mesocentrotus nudus), we discovered a novel modified nucleoside, hydroxy-N6-threonylcarbamoyladenosine (ht6A), 3' adjacent to the anticodon (position 37). Biochemical analysis revealed that ht6A37 has the ability to prevent mt-tRNALys from misreading AAA as lysine, thereby indicating that hydroxylation of N6-threonylcarbamoyladenosine (t6A) contributes to the establishment of the non-universal genetic code in echinoderm mitochondria.


Asunto(s)
Código Genético , Mitocondrias/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Lisina/metabolismo , Erizos de Mar/genética , Erizos de Mar/metabolismo , Animales , Asparagina/metabolismo , Hidroxilación , Lisina/metabolismo
11.
Nucleic Acids Res ; 45(12): 7401-7415, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28472312

RESUMEN

ALKBH1 is a 2-oxoglutarate- and Fe2+-dependent dioxygenase responsible for multiple cellular functions. Here, we show that ALKBH1 is involved in biogenesis of 5-hydroxymethyl-2΄-O-methylcytidine (hm5Cm) and 5-formyl-2΄-O-methylcytidine (f5Cm) at the first position (position 34) of anticodon in cytoplasmic tRNALeu, as well as f5C at the same position in mitochondrial tRNAMet. Because f5C34 of mitochondrial tRNAMet is essential for translation of AUA, a non-universal codon in mammalian mitochondria, ALKBH1-knockout cells exhibited a strong reduction in mitochondrial translation and reduced respiratory complex activities, indicating that f5C34 formation mediated by ALKBH1 is required for efficient mitochondrial functions. We reconstituted formation of f5C34 on mitochondrial tRNAMetin vitro, and found that ALKBH1 first hydroxylated m5C34 to form hm5C34, and then oxidized hm5C34 to form f5C34. Moreover, we found that the frequency of 1-methyladenosine (m1A) in two mitochondrial tRNAs increased in ALKBH1-knockout cells, indicating that ALKBH1 also has demethylation activity toward m1A in mt-tRNAs. Based on these results, we conclude that nuclear and mitochondrial ALKBH1 play distinct roles in tRNA modification.


Asunto(s)
Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Citidina/análogos & derivados , Biosíntesis de Proteínas , ARN de Transferencia de Metionina/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/deficiencia , Anticodón/química , Anticodón/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas , Citidina/metabolismo , Citosol/metabolismo , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Células HEK293 , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Conformación de Ácido Nucleico , Oxidación-Reducción , Fosforilación Oxidativa , ARN de Transferencia de Metionina/metabolismo
12.
Nucleic Acids Res ; 45(4): 2137-2149, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-27913732

RESUMEN

N6-Threonylcarbamoyladenosine (t6A) and its derivatives are universally conserved modified nucleosides found at position 37, 3΄ adjacent to the anticodon in tRNAs responsible for ANN codons. These modifications have pleiotropic functions of tRNAs in decoding and protein synthesis. In certain species of bacteria, fungi, plants and protists, t6A is further modified to the cyclic t6A (ct6A) via dehydration catalyzed by TcdA. This additional modification is involved in efficient decoding of tRNALys. Previous work indicated that the chemical structure of ct6A is a cyclic active ester with an oxazolone ring. In this study, we solved the crystal structure of chemically synthesized ct6A nucleoside. Unexpectedly, we found that the ct6A adopted a hydantoin isoform rather than an oxazolone isoform, and further showed that the hydantoin isoform of ct6A was actually present in Escherichia coli tRNAs. In addition, we observed that hydantoin ct6A is susceptible to epimerization under mild alkaline conditions, warning us to avoid conventional deacylation of tRNAs. A hallmark structural feature of this isoform is the twisted arrangement of the hydantoin and adenine rings. Functional roles of ct6A37 in tRNAs should be reconsidered.


Asunto(s)
Adenosina/análogos & derivados , Hidantoínas/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Adenosina/síntesis química , Adenosina/química , Adenosina/metabolismo , Escherichia coli/genética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/metabolismo
13.
Nucleic Acids Res ; 45(4): 2124-2136, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-27913733

RESUMEN

Transfer RNA modifications play pivotal roles in protein synthesis. N6-threonylcarbamoyladenosine (t6A) and its derivatives are modifications found at position 37, 3΄-adjacent to the anticodon, in tRNAs responsible for ANN codons. These modifications are universally conserved in all domains of life. t6A and its derivatives have pleiotropic functions in protein synthesis including aminoacylation, decoding and translocation. We previously discovered a cyclic form of t6A (ct6A) as a chemically labile derivative of t6A in tRNAs from bacteria, fungi, plants and protists. Here, we report 2-methylthio cyclic t6A (ms2ct6A), a novel derivative of ct6A found in tRNAs from Bacillus subtilis, plants and Trypanosoma brucei. In B. subtilis and T. brucei, ms2ct6A disappeared and remained to be ms2t6A and ct6A by depletion of tcdA and mtaB homologs, respectively, demonstrating that TcdA and MtaB are responsible for biogenesis of ms2ct6A.


Asunto(s)
Adenosina/análogos & derivados , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Treonina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Secuencia de Bases , Conformación de Ácido Nucleico , Fenotipo , ARN de Planta/química , ARN de Planta/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Treonina/química , Treonina/metabolismo
14.
Nucleic Acids Res ; 44(2): 509-23, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26681692

RESUMEN

Post-transcriptional modifications at the anticodon first (wobble) position of tRNA play critical roles in precise decoding of genetic codes. 5-carboxymethoxyuridine (cmo(5)U) and its methyl ester derivative 5-methoxycarbonylmethoxyuridine (mcmo(5)U) are modified nucleosides found at the anticodon wobble position in several tRNAs from Gram-negative bacteria. cmo(5)U and mcmo(5)U facilitate non-Watson-Crick base pairing with guanosine and pyrimidines at the third positions of codons, thereby expanding decoding capabilities. By mass spectrometric analyses of individual tRNAs and a shotgun approach of total RNA from Escherichia coli, we identified mcmo(5)U as a major modification in tRNA(Ala1), tRNA(Ser1), tRNA(Pro3) and tRNA(Thr4); by contrast, cmo(5)U was present primarily in tRNA(Leu3) and tRNA(Val1). In addition, we discovered 5-methoxycarbonylmethoxy-2'-O-methyluridine (mcmo(5)Um) as a novel but minor modification in tRNA(Ser1). Terminal methylation frequency of mcmo(5)U in tRNA(Pro3) was low (≈30%) in the early log phase of cell growth, gradually increased as growth proceeded and reached nearly 100% in late log and stationary phases. We identified CmoM (previously known as SmtA), an AdoMet-dependent methyltransferase that methylates cmo(5)U to form mcmo(5)U. A luciferase reporter assay based on a +1 frameshift construct revealed that terminal methylation of mcmo(5)U contributes to the decoding ability of tRNA(Ala1).


Asunto(s)
Anticodón/metabolismo , Codón/metabolismo , Escherichia coli/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , Uridina/metabolismo , Secuencia de Aminoácidos , Anticodón/química , Emparejamiento Base , Codón/química , Escherichia coli/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Regulación Bacteriana de la Expresión Génica , Código Genético , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN de Transferencia/química , Ribosomas/genética , Ribosomas/metabolismo , Alineación de Secuencia , Uridina/análogos & derivados
15.
Genes Cells ; 20(11): 887-901, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26333314

RESUMEN

Short interspersed elements (SINEs) comprise a significant portion of mammalian genomes and regulate gene expression through a variety of mechanisms. Here, we show that Myodonta clade-specific 4.5S RNAH (4.5SH), an abundant nuclear noncoding RNA that is highly homologous to the retrotransposon SINE B1, controls the expression of reporter gene that contains the antisense insertion of SINE B1 via nuclear retention. The depletion of endogenous 4.5SH with antisense oligonucleotides neutralizes the nuclear retention and changes the subcellular distribution of the reporter transcripts containing the antisense SINE B1 insertion. Importantly, endogenous transcripts with antisense SINE B1 were increased in the cytoplasm after knockdown of 4.5SH, leading to a decrease in cellular growth. We propose a tentative hypothesis that the amplification of the 4.5SH cluster in specific rodent species might delineate their evolutionary direction via the regulation of genes containing the antisense insertion of SINE B1.


Asunto(s)
Regulación de la Expresión Génica , ARN Bacteriano/genética , ARN no Traducido/genética , Retroelementos/genética , Animales , Secuencia de Bases , Células Cultivadas , Regulación hacia Abajo , Evolución Molecular , Técnicas de Silenciamiento del Gen , Genes Reporteros , Células HeLa , Humanos , Ratones , ARN Bacteriano/metabolismo , Elementos de Nucleótido Esparcido Corto
16.
Methods Enzymol ; 560: 19-28, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26253964

RESUMEN

RNA molecules contain a wide variety of chemical modifications that cannot be deduced from the genomic sequence. RNA modifications confer a chemical diversity to simple RNA molecules, enabling a greater variety of biological functions. To detect RNA modifications, highly sensitive analytical tools are required. Liquid chromatography/mass spectrometry (LC/MS) has been playing a vital role in analyzing minor modified nucleosides in RNA specimens from various sources. Reverse-phase chromatography (RPC) has been used for LC/MS for a long time because RPC is compatible with electrospray ionization (ESI) MS. However, RPC is not always suitable for detecting hydrophilic or polar nucleosides. We here describe a different mode of LC/MS for detecting RNA modifications using hydrophilic interaction liquid chromatography (HILIC). HILIC/ESI-MS is a valuable alternative for profiling modified nucleosides.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Nucleósidos/química , Procesamiento Postranscripcional del ARN/genética , Interacciones Hidrofóbicas e Hidrofílicas , Nucleósidos/análisis
17.
Proc Natl Acad Sci U S A ; 112(9): 2764-9, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25675486

RESUMEN

Familial dysautonomia (FD), a hereditary sensory and autonomic neuropathy, is caused by missplicing of exon 20, resulting from an intronic mutation in the inhibitor of kappa light polypeptide gene enhancer in B cells, kinase complex-associated protein (IKBKAP) gene encoding IKK complex-associated protein (IKAP)/elongator protein 1 (ELP1). A newly established splicing reporter assay allowed us to visualize pathogenic splicing in cells and to screen small chemicals for the ability to correct the aberrant splicing of IKBKAP. Using this splicing reporter, we screened our chemical libraries and identified a compound, rectifier of aberrant splicing (RECTAS), that rectifies the aberrant IKBKAP splicing in cells from patients with FD. Here, we found that the levels of modified uridine at the wobble position in cytoplasmic tRNAs are reduced in cells from patients with FD and that treatment with RECTAS increases the expression of IKAP and recovers the tRNA modifications. These findings suggest that the missplicing of IKBKAP results in reduced tRNA modifications in patients with FD and that RECTAS is a promising therapeutic drug candidate for FD.


Asunto(s)
Proteínas Portadoras/metabolismo , Disautonomía Familiar/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Intrones , Empalme del ARN/efectos de los fármacos , Proteínas Portadoras/genética , Disautonomía Familiar/tratamiento farmacológico , Disautonomía Familiar/genética , Células HeLa , Compuestos Heterocíclicos con 3 Anillos/química , Humanos , Mutación , Empalme del ARN/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Factores de Elongación Transcripcional
18.
J Biol Chem ; 289(38): 26201-26212, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25086048

RESUMEN

Biogenesis of eukaryotic ribosome is a complex event involving a number of non-ribosomal factors. During assembly of the ribosome, rRNAs are post-transcriptionally modified by 2'-O-methylation, pseudouridylation, and several base-specific modifications, which are collectively involved in fine-tuning translational fidelity and/or modulating ribosome assembly. By mass-spectrometric analysis, we demonstrated that N(4)-acetylcytidine (ac(4)C) is present at position 1773 in the 18 S rRNA of Saccharomyces cerevisiae. In addition, we found an essential gene, KRE33 (human homolog, NAT10), that we renamed RRA1 (ribosomal RNA cytidine acetyltransferase 1) encoding an RNA acetyltransferase responsible for ac(4)C1773 formation. Using recombinant Rra1p, we could successfully reconstitute ac(4)C1773 in a model rRNA fragment in the presence of both acetyl-CoA and ATP as substrates. Upon depletion of Rra1p, the 23 S precursor of 18 S rRNA was accumulated significantly, which resulted in complete loss of 18 S rRNA and small ribosomal subunit (40 S), suggesting that ac(4)C1773 formation catalyzed by Rra1p plays a critical role in processing of the 23 S precursor to yield 18 S rRNA. When nuclear acetyl-CoA was depleted by inactivation of acetyl-CoA synthetase 2 (ACS2), we observed temporal accumulation of the 23 S precursor, indicating that Rra1p modulates biogenesis of 40 S subunit by sensing nuclear acetyl-CoA concentration.


Asunto(s)
Acetiltransferasas/fisiología , ARN Ribosómico 18S/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Secuencia de Bases , Núcleo Celular/metabolismo , Datos de Secuencia Molecular , Procesamiento Postranscripcional del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Ribosómico 18S/genética , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Especificidad por Sustrato
19.
Nucleic Acids Res ; 42(14): 9350-65, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25063302

RESUMEN

Methylation is a versatile reaction involved in the synthesis and modification of biologically active molecules, including RNAs. N(6)-methyl-threonylcarbamoyl adenosine (m(6)t(6)A) is a post-transcriptional modification found at position 37 of tRNAs from bacteria, insect, plants, and mammals. Here, we report that in Escherichia coli, yaeB (renamed as trmO) encodes a tRNA methyltransferase responsible for the N(6)-methyl group of m(6)t(6)A in tRNA(Thr) specific for ACY codons. TrmO has a unique single-sheeted ß-barrel structure and does not belong to any known classes of methyltransferases. Recombinant TrmO employs S-adenosyl-L-methionine (AdoMet) as a methyl donor to methylate t(6)A to form m(6)t(6)A in tRNA(Thr). Therefore, TrmO/YaeB represents a novel category of AdoMet-dependent methyltransferase (Class VIII). In a ΔtrmO strain, m(6)t(6)A was converted to cyclic t(6)A (ct(6)A), suggesting that t(6)A is a common precursor for both m(6)t(6)A and ct(6)A. Furthermore, N(6)-methylation of t(6)A enhanced the attenuation activity of the thr operon, suggesting that TrmO ensures efficient decoding of ACY. We also identified a human homolog, TRMO, indicating that m(6)t(6)A plays a general role in fine-tuning of decoding in organisms from bacteria to mammals.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Escherichia coli/metabolismo , ARN de Transferencia de Treonina/metabolismo , ARNt Metiltransferasas/metabolismo , Adenosina/química , Adenosina/metabolismo , Sitios de Unión , Codón , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Metilación , Proteínas/metabolismo , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Treonina/química , S-Adenosilmetionina/metabolismo , Especificidad por Sustrato , ARNt Metiltransferasas/genética
20.
Methods Mol Biol ; 1093: 59-72, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24178557

RESUMEN

Piwi-interacting RNAs (piRNA) are fully modified by 2'-O-methylation at their 3'-termini. This terminal methylation is required to prevent 3'-nucleotide addition, which serves as a tag for destabilization. In this chapter, we describe biochemical and mass spectrometric analyses of 2'-O-methylation at 3'-termini of piRNAs.


Asunto(s)
Espectrometría de Masas/métodos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Animales , Northern Blotting , Masculino , Metilación , Ratones , Oxidación-Reducción , ARN Interferente Pequeño/aislamiento & purificación , Testículo/metabolismo , Ultrafiltración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA