Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Res Toxicol ; 7: 100187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104612

RESUMEN

To study the effects of drugs on embryo/fetal development (EFD), developmental and reproductive toxicity studies in zebrafish (Danio rerio) embryos is expected to be an accepted alternative method to animal studies using mammals. However, there is a lack of clarity in the relationship between the concentration of developmental toxicity agents in whole embryos or larvae (Ce) and that in aqueous solution (Cw), and also between the amount of drug exposure required to cause developmental toxicity in zebrafish embryos or larvae and that required in mammals. Here, we measured Ce for developmental toxicity agents every 24 h starting at 24 h post fertilization (hpf). We found a high correlation (R 2: 0.87-0.96) between log [Ce/Cw] and the n-octanol-water distribution coefficient at pH 7 (logD) of each drug at all time points up to 120 hpf. We used this relationship to estimate the Ce values of the 21 positive-control reference drugs listed in ICH guidelines on reproductive and developmental toxicity studies (ICH S5). We then calculated the area under the Ce-time curve in zebrafish (zAUC) for each drug from the regression equation between log [Ce/Cw] and logD and compared it with the AUC at the no-observed-adverse-effect level in rats and rabbits and at the effective dose in humans described in ICH S5. The log of the calculated zAUC for the 14 drugs identified as positive in the zebrafish developmental toxicity test was relatively highly positively correlated with the log [AUC] for rats, rabbits, and humans. These findings provide important and positive information on the applicability of the zebrafish embryo developmental toxicity test as an alternative method of EFD testing. (267 words).

2.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36986467

RESUMEN

The pharmacological and toxicological effects of active metabolites of enzymes including cytochrome P450 (CYP) are important. While it has been believed for a long time that thalidomide causes characteristic limb malformation only in rabbits and primates including humans, the involvement of their CYP3A subtypes (CYP3As) has been suggested. Recently, however, it was reported that zebrafish were sensitive to thalidomide, showing defects of pectoral fins, homologous organs of forelimbs in mammals, as well as other deformities. In this study, we prepared human CYP3A7 (hCYP3A7)-expressing zebrafish (F0) using a transposon system. Thalidomide caused pectoral fin defects and other malformations including pericardial edema in hCYP3A7-expressing embryos/larvae but not in wild-type and hCYP1A1-expressing embryos/larvae. Thalidomide also reduced the expression of fibroblast growth factor 8 in pectoral fin buds in only hCYP3A7-expressing embryos/larvae. The results suggest the involvement of human-type CYP3A in thalidomide teratogenicity.

3.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835425

RESUMEN

Metabolic activation is the primary cause of chemical toxicity including hepatotoxicity. Cytochrome P450 2E (CYP2E) is involved in this process for many hepatotoxicants, including acetaminophen (APAP), one of the most common analgesics and antipyretics. Although the zebrafish is now used as a model for toxicology and toxicity tests, the CYP2E homologue in zebrafish has not been identified yet. In this study, we prepared transgenic zebrafish embryos/larvae expressing rat CYP2E1 and enhanced green fluorescent protein (EGFP) using a ß-actin promoter. Rat CYP2E1 activity was confirmed by the fluorescence of 7-hydroxycoumarin (7-HC), a metabolite of 7-methoxycoumarin that was specific for CYP2 in transgenic larvae with EGFP fluorescence (EGFP [+]) but not in transgenic larvae without EGFP fluorescence (EGFP [-]). APAP (2.5 mM) caused reduction in the size of the retina in EGFP [+] larvae but not in EGFP [-] larvae, while APAP similarly reduced pigmentation in both larvae. APAP at even 1 mM reduced the liver size in EGFP [+] larvae but not in EGFP [-] larvae. APAP-induced reduction of liver size was inhibited by N-acetylcysteine. These results suggest that rat CYP2E1 is involved in some APAP-induced toxicological endpoints in the retina and liver but not in melanogenesis of the developing zebrafish.


Asunto(s)
Acetaminofén , Antipiréticos , Enfermedad Hepática Inducida por Sustancias y Drogas , Citocromo P-450 CYP2E1 , Hígado , Retina , Animales , Ratas , Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Citocromo P-450 CYP2E1/genética , Hígado/efectos de los fármacos , Hígado/patología , Retina/efectos de los fármacos , Retina/patología , Pez Cebra , Animales Modificados Genéticamente , Antipiréticos/efectos adversos
4.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322603

RESUMEN

Zebrafish are used widely in biomedical, toxicological, and developmental research, but information on their xenobiotic metabolism is limited. Here, we characterized the expression of 14 xenobiotic cytochrome P450 (CYP) subtypes in whole embryos and larvae of zebrafish (4 to 144 h post-fertilization (hpf)) and the metabolic activities of several representative human CYP substrates. The 14 CYPs showed various changes in expression patterns during development. Many CYP transcripts abruptly increased at about 96 hpf, when the hepatic outgrowth progresses; however, the expression of some cyp1s (1b1, 1c1, 1c2, 1d1) and cyp2r1 peaked at 48 or 72 hpf, before full liver development. Whole-mount in situ hybridization revealed cyp2y3, 2r1, and 3a65 transcripts in larvae at 55 hpf after exposure to rifampicin, phenobarbital, or 2,3,7,8-tetrachlorodibenzo-p-dioxin from 30 hpf onward. Marked conversions of diclofenac to 4'-hydroxydiclofenac and 5-hydroxydiclofenac, and of caffeine to 1,7-dimethylxanthine, were detected as early as 24 or 50 hpf. The rate of metabolism to 4'-hydroxydiclofenac was more marked at 48 and 72 hpf than at 120 hpf, after the liver had become almost fully developed. These findings reveal the expression of various CYPs involved in chemical metabolism in developing zebrafish, even before full liver development.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32376496

RESUMEN

Pufferfish saxitoxin and tetrodotoxin binding proteins (PSTBPs) play an important role in the toxification of certain species of pufferfish. Recombinant Takifugu rubripes PSTBP1 (rTrub.PSTBP1) is reported to bind to tributyltin, and so it has been suggested that rTrub.PSTBP1 may reduce the toxicity of tributyltin. However, the role of PSTBP1 in vivo remains to be elucidated. Here, we established a transgenic medaka line showing whole-body Renilla reniformis green fluorescent protein and Trub.PSTBP1 expression, as confirmed by real-time polymerase chain reaction and mRNA-Seq analysis. mRNA-Seq analysis also showed that cytochrome P450 superfamily genes and the gene encoding ATP-binding cassette sub-family G member 2 were highly expressed in the transgenic medaka. Using embryos of the transgenic medaka line, we conducted an in ovo nanoinjection test to examine the effect of Trub.PSTBP1 in vivo, and obtained data suggesting that Trub.PSTBP1 expression may have reduced the toxicity of tributyltin in our transgenic medaka line. Our findings will be useful for future functional analyses of Trub.PSTBP1.


Asunto(s)
Microinyecciones/métodos , Oryzias/crecimiento & desarrollo , Óvulo/efectos de los fármacos , Saxitoxina/metabolismo , Canales de Sodio/metabolismo , Takifugu/metabolismo , Compuestos de Trialquiltina/toxicidad , Animales , Animales Modificados Genéticamente , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Oryzias/genética , Oryzias/metabolismo , Óvulo/metabolismo , Canales de Sodio/genética , Tasa de Supervivencia , Takifugu/genética
6.
J Toxicol Sci ; 43(4): 267-273, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29618715

RESUMEN

Developmental toxicity is an adverse developmental outcome, i.e., death, malformation, growth retardation, or functional deficiency. Recently, alternative methods of assessing developmental toxicity using zebrafish (Danio rerio) as a preliminary screening have attracted attention because of their low cost and high throughput. However, most toxicity evaluations have been based on a chemical concentration in an aqueous solution, and the chemical concentrations in embryos/larvae and their temporal behavior have in most cases been unclear, regardless of differences of chemical hydrophobicity. In the present study, we selected three teratogens with different hydrophobicities (caffeine, CA, log Kow -0.07; sodium valproate, VA, log Kow 0.26 (pH 7.4); and diethylstilbestrol, DES, log Kow 5.07), and we measured their concentrations in embryos/larvae exposed to these chemicals every 24 hr post-fertilization (hpf) until 144 hpf. Kinetic analysis based on a one-compartment fish model that yields first order kinetics for CA and VA revealed that concentrations of both CA and VA in embryos/larvae increased gradually and became saturated by around 100 hpf. In contrast, DES concentrations in embryos/larvae reached a maximum at 48 or 72 hpf and then decreased gradually. The present study suggests that the temporal pattern of chemical concentrations is a function of the hydrophobicity of the chemicals.


Asunto(s)
Cafeína/toxicidad , Dietilestilbestrol/toxicidad , Teratógenos/toxicidad , Ácido Valproico/toxicidad , Pez Cebra/embriología , Animales , Cafeína/farmacocinética , Dietilestilbestrol/farmacocinética , Fertilización , Interacciones Hidrofóbicas e Hidrofílicas , Teratógenos/farmacocinética , Factores de Tiempo , Ácido Valproico/farmacocinética , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...