RESUMEN
T lymphocytes discriminate between healthy and infected or cancerous cells via T-cell receptor-mediated recognition of peptides bound and presented by cell-surface-expressed major histocompatibility complex molecules (MHCs). Pre-T-cell receptors (preTCRs) on thymocytes foster development of αßT lymphocytes through their ß chain interaction with MHC displaying self-peptides on thymic epithelia. The specific binding of a preTCR with a peptide-MHC complex (pMHC) has been identified previously as forming a weak affinity complex with a distinct interface from that of mature αßTCR. However, a lack of appropriate tools has limited prior efforts to investigate this unique interface. Here we designed a small-scale linkage screening protocol using bismaleimide linkers for determining residue-specific distance constraints between transiently interacting protein pairs in solution. Employing linkage distance restraint-guided molecular modeling, we report the oriented solution docking geometry of a preTCRß-pMHC interaction. The linkage model of preTCRß-pMHC complex was independently verified with paramagnetic pseudocontact chemical shift (PCS) NMR of the unlinked protein mixtures. Using linkage screens, we show that the preTCR binds with differing affinities to peptides presented by MHC in solution. Moreover, the C-terminal peptide segment is a key determinant in preTCR-pMHC recognition. We also describe the process for future large-scale production and purification of the linked constructs for NMR, X-ray crystallography, and single-molecule electron microscopy studies.
Asunto(s)
Antígenos de Superficie/ultraestructura , Unión Proteica/genética , Receptores de Antígenos de Linfocitos T/ultraestructura , Linfocitos T/ultraestructura , Antígenos de Superficie/química , Antígenos de Superficie/genética , Humanos , Complejo Mayor de Histocompatibilidad/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/ultraestructura , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Péptidos/genética , Dominios y Motivos de Interacción de Proteínas/genética , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/ultraestructura , Linfocitos T/química , Linfocitos T/inmunología , Timocitos/química , Timocitos/ultraestructuraRESUMEN
Self-discrimination, a critical but ill-defined molecular process programmed during thymocyte development, requires myriad pre-T cell receptors (preTCRs) and αßTCRs. Using x-ray crystallography, we show how a preTCR applies the concave ß-sheet surface of its single variable domain (Vß) to "horizontally" grab the protruding MHC α2-helix. By contrast, αßTCRs purpose all six complementarity-determining region (CDR) loops of their paired VαVß module to recognize peptides bound to major histocompatibility complex molecules (pMHCs) in "vertical" head-to-head binding. The preTCR topological fit ensures that CDR3ß reaches the peptide's featured C-terminal segment for pMHC sampling, establishing the subsequent αßTCR canonical docking mode. "Horizontal" docking precludes germline CDR1ß- and CDR2ß-MHC binding to broaden ß-chain repertoire diversification before αßTCR-mediated selection refinement. Thus, one subunit successively attunes the recognition logic of related multicomponent receptors.
Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta/química , Timocitos/inmunología , Animales , Cristalografía por Rayos X , Humanos , Ligandos , Complejo Mayor de Histocompatibilidad , Ratones , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina betaRESUMEN
MOTIVATION: Network visualizations of complex biological datasets usually result in 'hairball' images, which do not discriminate network modules. RESULTS: We present the EntOptLayout Cytoscape plug-in based on a recently developed network representation theory. The plug-in provides an efficient visualization of network modules, which represent major protein complexes in protein-protein interaction and signalling networks. Importantly, the tool gives a quality score of the network visualization by calculating the information loss between the input data and the visual representation showing a 3- to 25-fold improvement over conventional methods. AVAILABILITY AND IMPLEMENTATION: The plug-in (running on Windows, Linux, or Mac OS) and its tutorial (both in written and video forms) can be downloaded freely under the terms of the MIT license from: http://apps.cytoscape.org/apps/entoptlayout. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Algoritmos , Programas Informáticos , Biología Computacional , Unión Proteica , Proteínas , Transducción de SeñalRESUMEN
We report the crystal structures of the human (dihydro)lipoamide dehydrogenase (hLADH, hE3) and its disease-causing homodimer interface mutant D444V-hE3 at 2.27 and 1.84â¯Å resolution, respectively. The wild type structure is a unique uncomplexed, unliganded hE3 structure with the true canonical sequence. Based on the structural information a novel molecular pathomechanism is proposed for the impaired catalytic activity and enhanced capacity for reactive oxygen species generation of the pathogenic mutant. The mechanistic model involves a previously much ignored solvent accessible channel leading to the active site that might be perturbed also by other disease-causing homodimer interface substitutions of this enzyme.
Asunto(s)
Dihidrolipoamida Deshidrogenasa/química , Dihidrolipoamida Deshidrogenasa/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutación , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación ProteicaRESUMEN
Pathogenic amino acid substitutions of the common E3 component (hE3) of the human alpha-ketoglutarate dehydrogenase and the pyruvate dehydrogenase complexes lead to severe metabolic diseases (E3 deficiency), which usually manifest themselves in cardiological and/or neurological symptoms and often cause premature death. To date, 14 disease-causing amino acid substitutions of the hE3 component have been reported in the clinical literature. None of the pathogenic protein variants has lent itself to high-resolution structure elucidation by X-ray or NMR. Hence, the structural alterations of the hE3 protein caused by the disease-causing mutations and leading to dysfunction, including the enhanced generation of reactive oxygen species by selected disease-causing variants, could only be speculated. Here we report results of an examination of the effects on the protein structure of ten pathogenic mutations of hE3 using hydrogen/deuterium-exchange mass spectrometry (HDX-MS), a new and state-of-the-art approach of solution structure elucidation. On the basis of the results, putative structural and mechanistic conclusions were drawn regarding the molecular pathogenesis of each disease-causing hE3 mutation addressed in this study.
RESUMEN
Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form.
RESUMEN
Human dihydrolipoamide dehydrogenase (hLADH) is a flavoenzyme component (E3) of the human alpha-ketoglutarate dehydrogenase complex (α-KGDHc) and few other dehydrogenase complexes. Pathogenic mutations of hLADH cause severe metabolic diseases (atypical forms of E3 deficiency) that often escalate to cardiological or neurological presentations and even premature death; the pathologies are generally accompanied by lactic acidosis. hLADH presents a distinct conformation under acidosis (pH 5.5-6.8) with lower physiological activity and the capacity of generating reactive oxygen species (ROS). It has been shown by our laboratory that selected pathogenic mutations, besides lowering the physiological activity of hLADH, significantly stimulate ROS generation by hLADH, especially at lower pH, which might play a role in the pathogenesis of E3-deficiency in respective cases. Previously, we generated by molecular dynamics (MD) simulation the low-pH hLADH structure and analyzed the structural changes induced in this structure by eight of the pathogenic mutations of hLADH. In the absence of high resolution mutant structures these pieces of information are crucial for the mechanistic investigation of the molecular pathogeneses of the hLADH protein. In the present work we analyzed by molecular dynamics simulation the structural changes induced in the low-pH conformation of hLADH by five pathogenic mutations of hLADH; the structures of these disease-causing mutants of hLADH have never been examined before.
RESUMEN
Inclusion complexes of warfarin enantiomers with permethylated monoamino-ß-cyclodextrin (PMMABCD) were characterized using CE and (1)H NMR spectroscopy in aqueous solution. These techniques gave complementary information on the stability and the structure of the diastereomeric host-guest inclusion complexes. The stability constants were determined from CE experiments in a wide pH range. Change in the migration order on the variation of the pH was observed. (1)H NMR assignments have been established for the seven non-equivalent carbohydrate units of the host in the complex at pH 7-9. Specific H-H distance restraints were obtained from NOESY experiments and were introduced into molecular modeling to establish the geometry of the inclusion complexes. It was found that the open side chain warfarin enters the cavity from the primary side of the CD. The orientation of the coumarin ring within the cavity has the same preference for the two warfarin enantiomers owing to an ionic interaction with the amino group of the CD. Accordingly, enantioselectivity at pH 8.5 arises from the difference in the CH/π interactions between warfarin aromatics and the manifold of CH groups of the CD.
Asunto(s)
Warfarina/química , beta-Ciclodextrinas/química , Carbohidratos/química , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética/métodos , Relación Estructura-ActividadRESUMEN
A new, simple, and "green" method was developed for the surface modification of 20 nm diameter Stöber silica particles with 3-aminopropyl(diethoxy)methylsilane in ethanol. The bulk polycondensation of the reagent was inhibited and the stability of the sol preserved by adding a small amount of glacial acetic acid after appropriate reaction time. Centrifugation, ultrafiltration, and dialysis were compared in order to choose a convenient purification technique that allows the separation of unreacted silylating agent from the nanoparticles without destabilizing the sol. The exchange of the solvent to acidic water during the purification yielded a stable colloid, as well. Structural and morphological analysis of the obtained aminopropyl silica was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements, Fourier-transform infrared (FTIR), (13)C and (29)Si MAS nuclear magnetic resonance (NMR) spectroscopies, as well as small angle X-ray scattering (SAXS). Our investigations revealed that the silica nanoparticle surfaces were partially covered with aminopropyl groups, and multilayer adsorption followed by polycondensation of the silylating reagent was successfully avoided. The resulting stable aminopropyl silica sol (ethanolic or aqueous) is suitable for biomedical uses due to its purity.
Asunto(s)
Etanol/química , Silanos/química , Dióxido de Silicio/química , Ácido Acético/química , Aminas/química , Coloides , Tamaño de la PartículaRESUMEN
Capillary electrophoresis (CE) methods for chiral resolution of five antimalarial drugs (primaquine, tafenoquine, mefloquine, chloroquine and quinacrine) were developed by using a wide selection of neutral and anionic cyclodextrin (CD) derivatives. The use of sulfobutyl-ß-CD and carboxymethyl-ß-CD (CMBCD) resulted in good resolution of quinacrine and tafenoquine, respectively. New results are presented for resolutions of chloroquine and mefloquine. Application of carboxyalkyl- and sulfobutyl-CD derivatives provided improved resolution for primaquine. The impurity in primaquine sample detected by CE was identified as quinocide by MS and NMR. CMBCD provided not only the best separation of primaquine from quinocide but also the simultaneous complete resolution of both compounds.
Asunto(s)
Aminoquinolinas/análisis , Antimaláricos/análisis , Cloroquina/análisis , Mefloquina/análisis , Primaquina/análisis , beta-Ciclodextrinas/química , Aniones , Ciclodextrinas/química , Electroforesis Capilar , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , EstereoisomerismoRESUMEN
The inclusion of sanguinarine, a biologically active natural benzophenanthridine alkaloid, in cucurbit[7]uril (CB7) was studied by NMR and ground-state absorption spectroscopy, as well as steady-state and time-resolved fluorescence measurements in aqueous solution. The iminium form of sanguinarine (SA(+)) produces very stable 1 : 1 inclusion complex with CB7 (K = 1.0 × 10(6) M(-1)), whereas the equilibrium constant for the binding of the second CB7 is about 3 orders of magnitude smaller. Marked fluorescence quantum yield and fluorescence lifetime enhancements are found upon encapsulation of SA(+) due to the deceleration of the radiationless deactivation from the single-excited state, but the fluorescent properties of 1 : 1 and 1 : 2 complexes barely differ. The equilibrium between the iminium and alkanolamine forms is shifted 3.69 pK unit upon addition of CB7 as a consequence of the preferential encapsulation of the iminium form and the protection of the 6 position of sanguinarine against the nucleophilic attack by hydroxide anion. On the basis of thermodynamic cycle, about 225 M(-1) is estimated for the equilibrium constant of the complexation between the alkanolamine form of sanguinarine (SAOH) and CB7. The confinement in the CB7 macrocycle can be used to impede the nucleophilic addition of OH(-) to SA(+) and to hinder the photooxidation of SAOH.