Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Sci ; 40(2): 243-248, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38093142

RESUMEN

Coal coke, which is used widely in industrial furnaces, emits large amounts of CO2. To utilize solid biofuels as alternatives to coal coke, the fuel ratio of the biofuels must be improved to generate functions, such as deoxidization, permeability, and carbon pickup. In this study, an innovative densification molding method is proposed; it uses a two-step torrefaction process with a high CO2 reduction effect. The molding method consists of the following two-step torrefaction process at torrefaction temperatures of 463-773 K: In the first step, raw biomass is torrefied to remove some of the volatile matter that inhibits densified molding. In the second step, the torrefied biomass is densified at the above temperature. The purpose of the second torrefaction step is to further enhance the fuel ratio due to the conversion of volatile matter to fixed carbon and to develop the thermal softening of lignin. Solid biofuel densified using a two-step torrefaction process was produced from a Japanese cedar sample, and it was found that its fuel ratio was significantly improved. Furthermore, the mechanism of the adhesive effect during carbonization was elucidated by analyzing the structure of the densified solid biofuel using Raman spectroscopy.

2.
Front Immunol ; 14: 1271228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928526

RESUMEN

Mycobacterium bovis bacilli Calmette-Guerin (BCG) is a licensed vaccine against tuberculosis. It requires attenuated live bacteria to be effective, possibly because actively secreted proteins play a critical role in inducing anti-tuberculosis immunity. BCG also functions as an effective adjuvant. Moreover, the effects of BCG components as adjuvants are not important as those of attenuated live BCG, which is used in cancer immunotherapy. However, the BCG secreted proteins have not been paid attention in anticancer immunity. To understand mycobacterial secreted proteins' function, we investigate immune responses to BCG culture filtrate proteins (CFP). Here, CFP strongly induce both antigen-specific CD4+ T cells and specific CD8+ T cells, which may be functional cytotoxic T lymphocytes (CTLs). In this study, we clearly demonstrate that CFP acts as an adjuvant for CTL induction against specific co-administered proteins and propose CFP as a new protein adjuvant. The CTL response shows potent anticancer effects in mice. These findings could provide insight into the contribution of mycobacterial secreted proteins in both anticancer and antimycobacterial immunity.


Asunto(s)
Mycobacterium bovis , Tuberculosis , Animales , Ratones , Linfocitos T Citotóxicos , Vacuna BCG , Adyuvantes Inmunológicos/farmacología , Linfocitos T CD8-positivos
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674484

RESUMEN

Mycobacterium tuberculosis (Mtb) infection remains a major health problem worldwide. Although the Bacillus Calmette-Guérin (BCG) vaccine is the most widely used vaccination for preventing tuberculosis (TB), its efficacy is limited. We previously developed a new recombinant BCG (rBCG)-based vaccine encoding the Ag85B protein of M. kansasii (Mkan85B), termed rBCG-Mkan85B, and its administration is followed by boosting with plasmid DNA expressing the Ag85B gene (DNA-Mkan85B). Previously, we identified MHC-I (H2-Kd)-restricted epitopes that highly cross-react with those of Mtb in BALB/c (H2d) and CB6F1 (H2b/d) mice. We also reported that the rBCG-Mkan85B/DNA-Mkan85B prime-boost vaccination protocol protected CB6F1 mice against M. kansasii infection. In this study, to investigate the protective effect of our novel rBCG against Mtb infection, CB6F1 mice were either left unimmunized or immunized with the BCG, rBCG-Mkan85B, or rBCG-Mkan85B/DNA-Mkan85B vaccine for 10 weeks prior to inhalation exposure to the virulent Mtb Erdman strain for another 6 weeks. Compared with the BCG and rBCG-Mkan85B vaccinations, the rBCG-Mkan85B/DNA-Mkan85B prime-boost vaccination protocol significantly reduced the numbers of pulmonary colony-forming units (CFUs). Moreover, the rBCG-Mkan85B/DNA-Mkan85B prime-boost vaccination induced antigen-specific polyfunctional CD4+ and CD8+ T cells. These results suggest that CD8+ T-cell immunity to immunodominant epitopes of Mtb is enhanced by rBCG vector-based immunization. Thus, rBCG vector-based vaccinations may overcome the limited ability of the current BCG vaccine to elicit TB immunity.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Vacuna BCG , Linfocitos T CD8-positivos , Antígenos Bacterianos , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , Ratones Endogámicos BALB C
4.
Tuberculosis (Edinb) ; 138: 102294, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36542980

RESUMEN

Mycobacteria often cause chronic infection. To establish persistence in the host, mycobacteria need to evade host immune responses. However, the molecular mechanisms underlying the evasion strategy are not fully understood. Here, we demonstrate that mycobacterial cell wall lipids trigger an inhibitory receptor to suppress host immune responses. Mycolic acids are major cell wall components and are essential for survival of mycobacteria. By screening inhibitory receptors that react with mycobacterial lipids, we found that mycolic acids from various mycobacterial species bind to mouse Clec12A, and more potently to human Clec12A. Clec12A is a conserved inhibitory C-type lectin receptor containing immunoreceptor tyrosine-based inhibitory motif (ITIM). Innate immune responses, such as MCP-1 production, and PPD-specific recall T cell responses were augmented in Clec12A-deficient mice after infection. In contrast, human Clec12A transgenic mice were susceptible to infection with M. tuberculosis. These results suggest that mycobacteria dampen host immune responses by hijacking an inhibitory host receptor through their specific and essential lipids, mycolic acids. The blockade of this interaction might provide a therapeutic option for the treatment or prevention of mycobacterial infection.


Asunto(s)
Infecciones por Mycobacterium , Mycobacterium tuberculosis , Animales , Humanos , Ratones , Pared Celular/metabolismo , Inmunidad Innata , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ácidos Micólicos/metabolismo , Receptores Mitogénicos/metabolismo
5.
Vaccines (Basel) ; 9(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34835191

RESUMEN

The incidence of infections with nontuberculous mycobacteria (NTM) has been increasing worldwide. The emergence of multidrug-resistant NTM is a serious clinical concern, and a vaccine for NTM has not yet been developed. We previously developed a new recombinant Bacillus Calmette-Guérin (rBCG) vaccine encoding the antigen 85B (Ag85B) protein of Mycobacterium kansasii-termed rBCG-Mkan85B-which was used together with a booster immunization with plasmid DNA expressing the same M. kansasii Ag85B gene (DNA-Mkan85B). We reported that rBCG-Mkan85B/DNA-Mkan85B prime-boost immunization elicited various NTM strain-specific CD4+ and CD8+ T cells and induced Mycobacterium tuberculosis-specific immunity. In this study, to investigate the protective effect against M. kansasii infection, we challenged mice vaccinated with a rBCG-Mkan85B or rBCG-Mkan85B/DNA-Mkan85B prime-boost strategy with virulent M. kansasii. Although BCG and rBCG-Mkan85B immunization each suppressed the growth of M. kansasii in the mouse lungs, the rBCG-Mkan85B/DNA-Mkan85B prime-boost vaccination reduced the bacterial burden more significantly. Moreover, the rBCG-Mkan85B/DNA-Mkan85B prime-boost vaccination induced antigen-specific CD4+ and CD8+ T cells. Our data suggest that rBCG-Mkan85B/DNA-Mkan85B prime-boost vaccination effectively enhances antigen-specific T cells. Our novel rBCG could be a potential alternative to clinical BCG for preventing various NTM infections.

6.
FEBS J ; 287(11): 2212-2234, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31722116

RESUMEN

Tracking the localization and dynamics of the intracellular bioactive lipid phosphatidic acid (PA) is important for understanding diverse biological phenomena. Although several PA sensors have been developed, better ones are still needed for comprehensive PA detection in cells. We recently found that α-synuclein (α-Syn) selectively and strongly bound to PA in vitro. Here, we revealed that the N-terminal region of α-Syn (α-Syn-N) specifically bound to PA, with a dissociation constant of 6.6 µm. α-Syn-N colocalized with PA-producing enzymes, diacylglycerol kinase (DGK) ß at the plasma membrane (PM), myristoylated DGKζ at the Golgi apparatus, phorbol ester-stimulated DGKγ at the PM, and phospholipase D2 at the PM and Golgi but not with the phosphatidylinositol-4,5-bisphosphate-producing enzyme in COS-7 cells. However, α-Syn-N failed to colocalize with them in the presence of their inhibitors and/or their inactive mutants. These results indicate that α-Syn-N specifically binds to cellular PA and can be applied as an excellent PA sensor.


Asunto(s)
Diacilglicerol Quinasa/genética , Lípidos/genética , alfa-Sinucleína/genética , Animales , Células COS , Chlorocebus aethiops , Aparato de Golgi/genética , Humanos , Lípidos/química , Ácidos Fosfatidicos/química , Ácidos Fosfatidicos/genética , Fosfatidilinositoles , Fosfolipasa D/química , Fosfolipasa D/genética , Unión Proteica , Transducción de Señal , alfa-Sinucleína/química
7.
J Immunol ; 203(1): 188-197, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31101668

RESUMEN

Suppressor of cytokine signaling 1 (SOCS1) plays a key role in the negative regulation of JAK/STAT signaling, which is involved in innate immunity and subsequent adaptive immunity. Bacillus Calmette-Guérin (BCG) induces upregulation of SOCS1 expression in host cells, which may lead to the suppression of immune responses by BCG via inhibition of the JAK/STAT signaling pathway. This might cause A reduction in the protective effect of a BCG vaccine. In the current study, we assessed the immune responses to and the protective efficacy of a recombinant BCG secreting a dominant negative mutant of the SOCS1 molecule (rBCG-SOCS1DN). C57BL/6 mice were immunized with rBCG-SOCS1DN or parental BCG Tokyo vaccine strain harboring an empty plasmid vector (rBCG-pSO). rBCG-SOCS1DN enhanced the activation of bone marrow-derived dendritic cells and the activation of T cells compared with those with rBCG-pSO. The amounts of IFN-γ, TNF-α, and IL-6 produced by splenocytes of rBCG-SOCS1DN-immunized mice were larger than those produced by splenocytes of rBCG-pSO-immunized mice. Moreover, the rBCG-SOCS1DN-immunized mice showed a substantial reduction in the number of CFU of Mycobacterium tuberculosis in the lungs and spleens compared with that in control BCG-immunized mice when the immunized mice were infected with a highly pathogenic M. tuberculosis strain by inhalation. These findings provide evidence for the possibility of rBCG-SOCS1DN being an effective M. tuberculosis vaccine with a novel concept of rBCG as a tool for immunomodulation in host cells.


Asunto(s)
Vacuna BCG/inmunología , Células Dendríticas/inmunología , Mutación/genética , Mycobacterium tuberculosis/fisiología , Proteína 1 Supresora de la Señalización de Citocinas/genética , Linfocitos T/inmunología , Tuberculosis/inmunología , Animales , Vacuna BCG/genética , Recuento de Colonia Microbiana , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunización , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Transducción de Señal , Proteína 1 Supresora de la Señalización de Citocinas/antagonistas & inhibidores , Tuberculosis/prevención & control , Vacunas Sintéticas/genética
8.
Eur J Immunol ; 49(9): 1399-1414, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31135967

RESUMEN

Despite efforts to develop effective treatments and vaccines, Mycobacterium tuberculosis (Mtb), particularly pulmonary Mtb, continues to provide major health challenges worldwide. To improve immunization against the persistent health challenge of Mtb infection, we have studied the CD8+ T cell response to Bacillus Calmette-Guérin (BCG) and recombinant BCG (rBCG) in mice. Here, we generated CD8+ T cells with an rBCG-based vaccine encoding the Ag85B protein of M. kansasii, termed rBCG-Mkan85B, followed by boosting with plasmid DNA expressing the Ag85B gene (DNA-Mkan85B). We identified two MHC-I (H2-Kd )-restricted epitopes that induce cross-reactive responses to Mtb and other related mycobacteria in both BALB/c (H2d ) and CB6F1 (H2b/d ) mice. The H2-Kd -restricted peptide epitopes elicited polyfunctional CD8+ T cell responses that were also highly cross-reactive with those of other proteins of the Ag85 complex. Tetramer staining indicated that the two H2-Kd -restricted epitopes elicit distinct CD8+ T cell populations, a result explained by the X-ray structure of the two peptide/H2-Kd complexes. These results suggest that rBCG-Mkan85B vector-based immunization and DNA-Mkan85B boost may enhance CD8+ T cell response to Mtb, and might help to overcome the limited effectiveness of the current BCG in eliciting tuberculosis immunity.


Asunto(s)
Aciltransferasas/inmunología , Antígenos Bacterianos/inmunología , Vacuna BCG/inmunología , Proteínas Bacterianas/inmunología , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Tuberculosis/inmunología , Vacunas de ADN/inmunología , Secuencia de Aminoácidos , Animales , Epítopos/inmunología , Femenino , Inmunización/métodos , Inmunización Secundaria/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mycobacterium bovis/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/microbiología , Vacunación/métodos
9.
J Cell Biochem ; 120(6): 10043-10056, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30536880

RESUMEN

Diacylglycerol (DG) kinase (DGK), which phosphorylates DG to generate phosphatidic acid (PA), consists of ten isozymes (α-к). Recently, we identified a novel small molecule inhibitor, CU-3, that selectively inhibits the activity of the α isozyme. In addition, we newly obtained Compound A, which selectively and strongly inhibits type I DGKs (α, ß, and γ). In the present study, we demonstrated that both CU-3 and Compound A induced apoptosis (caspase 3/7 activity and DNA fragmentation) and viability reduction of AKI melanoma cells. Liquid chromatography-mass spectrometry revealed that the production of 32:0- and 34:0-PA species was commonly attenuated by CU-3 and Compound A, suggesting that lower levels of these PA molecular species are involved in the apoptosis induction and viability reduction of AKI cells. We determined the effects of the DGKα inhibitors on several other cancer cell lines derived from refractory cancers. In addition to melanoma, the DGKα inhibitors enhanced caspase 3/7 activity and reduced the viability of hepatocellular carcinoma, glioblastoma, and pancreatic cancer cells, but not breast adenocarcinoma cells. Interestingly, Western blot analysis indicated that the DGKα expression levels were positively correlated with the sensitivity to the DGK inhibitors. Because both CU-3 and Compound A induced interleukin-2 production by T cells, it is believed that these two compounds can enhance cancer immunity. Taken together, our results suggest that DGKα inhibitors are promising anticancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Diacilglicerol Quinasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Animales , Antineoplásicos/química , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diacilglicerol Quinasa/metabolismo , Inhibidores Enzimáticos/química , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Interleucina-2/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Ácidos Fosfatidicos/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
10.
Infect Immun ; 86(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30181351

RESUMEN

Suppressor of cytokine signaling 1 (SOCS1) is a negative regulator of JAK/STAT signaling and is induced by mycobacterial infection. To understand the major function of SOCS1 during infection, we established a novel system in which recombinant Mycobacterium bovis bacillus Calmette-Guérin expressed dominant-negative SOCS1 (rBCG-SOCS1DN) because it would not affect the function of SOCS1 in uninfected cells. When C57BL/6 mice and RAG1-/- mice were intratracheally inoculated with rBCG-SOCS1DN, the amount of rBCG-SOCS1DN in the lungs was significantly reduced compared to that in the lungs of mice inoculated with a vector control counterpart and wild-type BCG. However, these significant differences were not observed in NOS2-/- mice and RAG1-/- NOS2-/- double-knockout mice. These findings demonstrated that SOCS1 inhibits nitric oxide (NO) production to establish mycobacterial infection and that rBCG-SOCS1DN has the potential to be a powerful tool for studying the primary function of SOCS1 in mycobacterial infection.


Asunto(s)
Interacciones Huésped-Patógeno , Mycobacterium bovis/crecimiento & desarrollo , Transducción de Señal , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Tuberculosis/microbiología , Tuberculosis/patología , Animales , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética
11.
Adv Biol Regul ; 67: 101-108, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28918129

RESUMEN

Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). Mammalian DGK comprises ten isozymes (α-κ) and regulates a wide variety of physiological and pathological events, such as cancer, type II diabetes, neuronal disorders and immune responses. DG and PA consist of various molecular species that have different acyl chains at the sn-1 and sn-2 positions, and consequently, mammalian cells contain at least 50 structurally distinct DG/PA species. Because DGK is one of the components of phosphatidylinositol (PI) turnover, the generally accepted dogma is that all DGK isozymes utilize 18:0/20:4-DG derived from PI turnover. We recently established a specific liquid chromatography-mass spectrometry method to analyze which PA species were generated by DGK isozymes in a cell stimulation-dependent manner. Interestingly, we determined that DGKδ, which is closely related to the pathogenesis of type II diabetes, preferentially utilized 14:0/16:0-, 14:0/16:1-, 16:0/16:0-, 16:0/16:1-, 16:0/18:0- and 16:0/18:1-DG species (X:Y = the total number of carbon atoms: the total number of double bonds) supplied from the phosphatidylcholine-specific phospholipase C pathway, but not 18:0/20:4-DG, in high glucose-stimulated C2C12 myoblasts. Moreover, DGKα mainly consumed 14:0/16:0-, 16:0/18:1-, 18:0/18:1- and 18:1/18:1-DG species during cell proliferation in AKI melanoma cells. Furthermore, we found that 16:0/16:0-PA was specifically produced by DGKζ in Neuro-2a cells during retinoic acid- and serum starvation-induced neuronal differentiation. These results indicate that DGK isozymes utilize a variety of DG molecular species derived from PI turnover-independent pathways as substrates in different stimuli and cells. DGK isozymes phosphorylate various DG species to generate various PA species. It was revealed that the modes of activation of conventional and novel protein kinase isoforms by DG molecular species varied considerably. However, PA species-selective binding proteins have not been found to date. Therefore, we next attempted to identify PA species-selective binding proteins from the mouse brain and identified α-synuclein, which has causal links to Parkinson's disease. Intriguingly, we determined that among phospholipids, including several PA species (16:0/16:0-PA, 16:0/18:1-PA, 18:1/18:1-PA, 18:0/18:0-PA and 18:0/20:4-PA); 18:1/18:1-PA was the most strongly bound PA to α-synuclein. Moreover, 18:1/18:1-PA strongly enhanced secondary structural changes from the random coil form to the α-helix form and generated a multimeric and proteinase K-resistant α-synuclein protein. In contrast with the dogma described above, our recent studies strongly suggest that PI turnover-derived DG species and also various DG species derived from PI turnover-independent pathways are utilized by DGK isozymes. DG species supplied from distinct pathways may be utilized by DGK isozymes based on different stimuli present in different types of cells, and individual PA molecular species would have specific targets and exert their own physiological functions.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Diacilglicerol Quinasa/metabolismo , Diglicéridos/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfatidilinositoles/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diacilglicerol Quinasa/genética , Diglicéridos/genética , Humanos , Ácidos Fosfatidicos/genética , Fosfatidilinositoles/genética , Fosforilación , Fosfolipasas de Tipo C/genética
12.
Monoclon Antib Immunodiagn Immunother ; 36(4): 181-184, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28742439

RESUMEN

Diacylglycerol kinase (DGK) is responsible for the enzymatic conversion of diacylglycerol to phosphatidic acid. Since both diacylglycerol and phosphatidic acid serve as signaling molecules, DGK is regarded as a hub between diacylglycerol-mediated and phosphatidic acid-mediated signaling. One of the 10 DGK isozymes, DGKα, is shown to be involved in T cell function. Transfection studies using tagged expression vectors revealed that DGKα localizes to the cytoplasm and nucleus and translocates to the plasma membrane in response to T cell receptor stimulation. However, a limited number of studies reported the localization of native protein of DGKα in tissues and cells. In this study, we immunized mice with recombinant DGKα and developed several anti-DGKα monoclonal antibodies (mAbs). One of the established anti-DGKα mAbs is a clone DaMab-2 (mouse IgG1, kappa). In enzyme-linked immunosorbent assay, DaMab-2 recognized only DGKα, and did not react with the other isozymes, such as DGKγ, DGKζ, DGKη, and DGKδ. Importantly, DaMab-2 is very useful in immunocytochemical analysis of human cultured cells, indicating that DaMab-2 is advantageous to analyze the localization and function of DGKα.


Asunto(s)
Anticuerpos Monoclonales/química , Diacilglicerol Quinasa/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos , Escherichia coli , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Células HeLa , Humanos , Hibridomas , Ratones Endogámicos BALB C
13.
Anal Biochem ; 526: 43-49, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28315318

RESUMEN

Phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) hydrolyzes PC to generate the second messenger 1,2-diacylglycerol (DG) and phosphocholine. PC-PLC plays pivotal roles in inflammation, carcinogenesis, tumor progression, atherogenesis, and subarachnoid hemorrhage. Although the activity of PC-PLC in mammalian tissues was discovered approximately 40 years ago, neither the protein nor its gene has been identified. In the present study, we developed a non-radioactive enzyme activity assay for PC-PLC based on mass spectrometric detection of DG following HPLC separation. This new liquid chromatography-mass spectrometry (LC-MS) assay directly determines a specific reaction product, 1-palmitoyl-2-oleoyl-DG, that is generated from 1-palmitoyl-2-oleoyl-PC by purified Bacillus cereus PC-PLC. The LC-MS assay offers several advantages including a lower background (0.02% versus 91%), higher signal background ratio (4242 versus 1.06)/signal noise ratio (7494 versus 4.4), higher sensitivity (≥32-fold), and lower limit of quantitation (0.04 pmol versus 0.69 pmol of PC-PLC), than a conventional fluorometric assay, which indirectly detects phosphocholine produced in the reaction. In addition to Bacillus cereus PC-PLC, the LC-MS assay was applicable to the measurement of mammalian PC-PLC prepared from the mouse brain. The radioisotope-free, highly sensitive and precise LC-MS assay for PC-PLC would be useful for the purification and identification of PC-PLC protein.


Asunto(s)
Encéfalo/enzimología , Cromatografía Liquida/métodos , Pruebas de Enzimas/métodos , Espectrometría de Masas/métodos , Sinaptosomas/enzimología , Fosfolipasas de Tipo C/metabolismo , Animales , Diglicéridos/metabolismo , Activación Enzimática , Hidrólisis , Cinética , Ratones , Ratones Endogámicos C57BL , Fosfatidilcolinas/metabolismo , Transducción de Señal
14.
FEBS Lett ; 591(5): 784-791, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28186641

RESUMEN

α-Synuclein (α-syn), which causally links to Parkinson's disease, binds to vesicles containing phosphatidic acid (PA). However, the effects of the fatty acyl chains of PA on its ability to bind to α-syn protein remain unclear. Intriguingly, we reveal that among several PA species, 18:1/18:1-PA is the most strongly bound PA to the α-syn protein. Moreover, 18:1/18:1-PA more strongly enhances secondary structural changes from the random coil form to the α-helical form than 16:0/18:1-PA. Furthermore, 18:1/18:1-PA more markedly accelerates generation of multimeric and proteinase K-resistant α-syn protein compared to 16:0/18:1-PA. These results indicate that among phospholipids examined so far, 18:1/18:1-PA demonstrates the strongest binding to α-syn, as well as the most effective enhancement of its secondary structural changes and aggregation formation.


Asunto(s)
Liposomas/química , Ácidos Fosfatidicos/química , alfa-Sinucleína/química , Animales , Química Encefálica , Endopeptidasa K/química , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Expresión Génica , Humanos , Ratones , Agregado de Proteínas , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteolisis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , alfa-Sinucleína/biosíntesis , alfa-Sinucleína/aislamiento & purificación
15.
Front Cell Dev Biol ; 4: 82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27583247

RESUMEN

Ten mammalian diacylglycerol kinase (DGK) isozymes (α-κ) have been identified to date. Our previous review noted that several DGK isozymes can serve as potential drug targets for cancer, epilepsy, autoimmunity, cardiac hypertrophy, hypertension and type II diabetes (Sakane et al., 2008). Since then, recent genome-wide association studies have implied several new possible relationships between DGK isozymes and diseases. For example, DGKθ and DGKκ have been suggested to be associated with susceptibility to Parkinson's disease and hypospadias, respectively. In addition, the DGKη gene has been repeatedly identified as a bipolar disorder (BPD) susceptibility gene. Intriguingly, we found that DGKη-knockout mice showed lithium (BPD remedy)-sensitive mania-like behaviors, suggesting that DGKη is one of key enzymes of the etiology of BPD. Because DGKs are potential drug targets for a wide variety of diseases, the development of DGK isozyme-specific inhibitors/activators has been eagerly awaited. Recently, we have identified DGKα-selective inhibitors. Because DGKα has both pro-tumoral and anti-immunogenic properties, the DGKα-selective inhibitors would simultaneously have anti-tumoral and pro-immunogenic (anti-tumor immunogenic) effects. Although the ten DGK isozymes are highly similar to each other, our current results have encouraged us to identify and develop specific inhibitors/activators against every DGK isozyme that can be effective regulators and drugs against a wide variety of physiological events and diseases.

16.
Biochim Biophys Acta ; 1864(9): 1170-1176, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27346717

RESUMEN

Diacylglycerol kinase (DGK) consists of ten isozymes and is involved in a wide variety of patho-physiological events. However, the enzymological properties of DGKs have not been fully understood. In this study, we performed a comprehensive analysis on the 1-monoacylglycerol kinase (MGK) and 2-MGK activities of ten DGK isozymes. We revealed that type I (α, ß and γ), type II (δ, η and κ) and type III (ε) DGKs have 7.9-19.2% 2-MGK activity compared to their DGK activities, whereas their 1-MGK activities were <3.0%. Both the 1-MGK and 2-MGK activities of the type IV DGKs (ζ and ι) were <1% relative to their DGK activities. Intriguingly, type V DGKθ has approximately 6% 1-MGK activity and <2% 2-MGK activity compared to its DGK activity. Purified DGKθ exhibited the same results, indicating that its 1-MGK activity is intrinsic. Therefore, DGK isozymes are categorized into three types with respect to their 1-MGK and 2-MGK activities: those having (1) 2-MGK activity relatively stronger than their 1-MGK activity (types I-III), (2) only negligible 1-MGK and 2-MGK activities (type IV), and (3) 1-MGK activity stronger than its 2-MGK activity (type V). The 1-MGK activity of DGKθ and the 2-MGK activity of DGKα were stronger than those of the acylglycerol kinase reported as 1-MGK and 2-MGK to date. The presence or absence of 1-MGK and 2-MGK activities may be essential to the patho-physiological functions of each DGK isozyme.


Asunto(s)
Diacilglicerol Quinasa/metabolismo , Diglicéridos/metabolismo , Monoglicéridos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Animales , Células COS , Chlorocebus aethiops , Diacilglicerol Quinasa/clasificación , Diacilglicerol Quinasa/genética , Expresión Génica , Humanos , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ratones , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Recombinantes de Fusión/genética , Especificidad por Sustrato , Porcinos
17.
J Lipid Res ; 57(3): 368-79, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26768655

RESUMEN

Diacylglycerol kinase (DGK) consists of 10 isozymes. The α-isozyme enhances the proliferation of cancer cells. However, DGKα facilitates the nonresponsive state of immunity known as T-cell anergy; therefore, DGKα enhances malignant traits and suppresses immune surveillance. The aim of this study was to identify a novel small molecule that selectively and potently inhibits DGKα activity. We screened a library containing 9,600 chemical compounds using a newly established high-throughput DGK assay. As a result, we have obtained a promising compound, 5-[(2E)-3-(2-furyl)prop-2-enylidene]-3-[(phenylsulfonyl)amino]2-thioxo-1,3-thiazolidin-4-one) (CU-3), which selectively inhibited DGKα with an IC50 value of 0.6 µM. CU-3 targeted the catalytic region, but not the regulatory region, of DGKα. CU-3 competitively reduced the affinity of DGKα for ATP, but not diacylglycerol or phosphatidylserine. Moreover, this compound induced apoptosis in HepG2 hepatocellular carcinoma and HeLa cervical cancer cells while simultaneously enhancing the interleukin-2 production of Jurkat T cells. Taken together, these results indicate that CU-3 is a selective and potent inhibitor for DGKα and can be an ideal anticancer drug candidate that attenuates cancer cell proliferation and simultaneously enhances immune responses including anticancer immunity.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Diacilglicerol Quinasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Rodanina/análogos & derivados , Sulfonamidas/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Tiazoles/farmacología , Animales , Células COS , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Concentración 50 Inhibidora , Interleucina-2/biosíntesis , Isoenzimas/antagonistas & inhibidores , Activación de Linfocitos/efectos de los fármacos , Rodanina/farmacología , Especificidad por Sustrato , Linfocitos T/metabolismo
18.
Biochem Biophys Rep ; 7: 361-366, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28955926

RESUMEN

A variety of diacylglycerol (DG) molecular species are produced in stimulated cells. Conventional (α, ßII and γ) and novel (δ, ε, η and θ) protein kinase C (PKC) isoforms are known to be activated by DG. However, a comprehensive analysis has not been performed. In this study, we analyzed activation of the PKC isozymes in the presence of 2-2000 mmol% 16:0/16:0-, 16:0/18:1-, 18:1/18:1-, 18:0/20:4- or 18:0/22:6-DG species. PKCα activity was strongly increased by DG and exhibited less of a preference for 18:0/22:6-DG at 2 mmol%. PKCßII activity was moderately increased by DG and did not have significant preference for DG species. PKCγ activity was moderately increased by DG and exhibited a moderate preference for 18:0/22:6-DG at 2 mmol%. PKCδ activity was moderately increased by DG and exhibited a preference for 18:0/22:6-DG at 20 and 200 mmol%. PKCε activity moderately increased by DG and showed a moderate preference for 18:0/22:6-DG at 2000 mmol%. PKCη was not markedly activated by DG. PKCθ activity was the most strongly increased by DG and exhibited a preference for 18:0/22:6-DG at 2 and 20 mmol% DG. These results indicate that conventional and novel PKCs have different sensitivities and dependences on DG and a distinct preference for shorter and saturated fatty acid-containing and longer and polyunsaturated fatty acid-containing DG species, respectively. This differential regulation would be important for their physiological functions.

19.
Biochem Biophys Rep ; 8: 352-359, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28955976

RESUMEN

Phosphatidic acid (PA) is one of the phospholipids composing the plasma membrane and acts as a second messenger to regulate a wide variety of important cellular events, including mitogenesis, migration and differentiation. PA consists of various molecular species with different acyl chains at the sn-1 and sn-2 positions. However, it has been poorly understood what PA molecular species are produced during such cellular events. Here we identified the PA molecular species generated during retinoic acid (RA)-induced neuroblastoma cell differentiation using a newly established liquid chromatography/mass spectrometry (LC/MS) method. Intriguingly, the amount of 32:0-PA species was dramatically and transiently increased in Neuro-2a neuroblastoma cells 24-48 h after RA-treatment. In addition, 30:0- and 34:0-PA species were also moderately increased. Moreover, similar results were obtained when Neuro-2a cells were differentiated for 24 h by serum starvation. MS/MS analysis revealed that 32:0-PA species contains two palmitic acids (16:0 s). RT-PCR analysis showed that diacylglycerol kinase (DGK) δ and DGKζ were highly expressed in Neuro-2a cells. The silencing of DGKζ expression significantly decreased the production of 32:0-PA species, whereas DGKδ-siRNA did not. Moreover, neurite outgrowth was also markedly attenuated by the deficiency of DGKζ. Taken together, these results indicate that DGKζ exclusively generates very restricted PA species, 16:0/16:0-PA, and up-regulates neurite outgrowth during the initial/early stage of neuroblastoma cell differentiation.

20.
Biochem Biophys Res Commun ; 447(1): 89-94, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24695318

RESUMEN

We previously reported that diacylglycerol kinase ß (DGKß) induces neurites and branches, contributing to higher brain function including emotion and memories. However, the detailed molecular mechanism of DGKß function remains unknown. Therefore, we constructed various mutants of DGKß and compared their enzyme activity, intracellular localization, and ability to induce neurites and branching in SH-SY5Y cells. Even when RVH-domain and EF-hand motif were deleted, the mutant showed similar plasma membrane localization and neurite induction compared to wild type (WT), although the kinase activity of the mutant was three times higher than that of WT. In contrast, further deletion of C1 domain reduced the activity to 50% and abolished plasma membrane localization and neurite induction ability. When 34 amino acids were deleted from C-terminus, the mutants completely lost enzyme activity, plasma membrane localization, and the ability to induce neurites. A kinase-negative mutant of DGKß retained plasma membrane localization and induced significant neurites and branches; however, the rate of induction was weaker than that of WT. Furthermore, C1A and C1B mutants, which have a mutation in a cysteine residue in the C1A or C1B domain, and the RK/E mutant, which has substitutions of arginine and lysine to glutamic acid in a cluster of basic amino acids at the C-terminus, lost their plasma membrane localization and neurite induction ability. These results indicate that in addition to kinase activity, plasma membrane localization via the C1 domain and basic amino acids at the C-terminus were indispensable for neurite induction by DGKß.


Asunto(s)
Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Neuritas/efectos de los fármacos , Secuencia de Aminoácidos , Aminoácidos Básicos/genética , Animales , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Humanos , Mutación , Neuritas/metabolismo , Estructura Terciaria de Proteína , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...