Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 948, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088390

RESUMEN

Voltage-sensing phosphatase (Vsp) is a unique membrane protein that translates membrane electrical activities into the changes of phosphoinositide profiles. Vsp orthologs from various species have been intensively investigated toward their biophysical properties, primarily using a heterologous expression system. In contrast, the physiological role of Vsp in native tissues remains largely unknown. Here we report that zebrafish Vsp (Dr-Vsp), encoded by tpte gene, is functionally expressed on the endomembranes of lysosome-rich enterocytes (LREs) that mediate dietary protein absorption via endocytosis in the zebrafish mid-intestine. Dr-Vsp-deficient LREs were remarkably defective in forming endosomal vacuoles after initial uptake of dextran and mCherry. Dr-Vsp-deficient zebrafish exhibited growth restriction and higher mortality during the critical period when zebrafish larvae rely primarily on exogenous feeding via intestinal absorption. Furthermore, our comparative study on marine invertebrate Ciona intestinalis Vsp (Ci-Vsp) revealed co-expression with endocytosis-associated genes in absorptive epithelial cells of the Ciona digestive tract, corresponding to zebrafish LREs. These findings signify a crucial role of Vsp in regulating endocytosis-dependent nutrient absorption in specialized enterocytes across animal species.


Asunto(s)
Ciona intestinalis , Monoéster Fosfórico Hidrolasas , Animales , Endocitosis , Enterocitos/metabolismo , Nutrientes , Monoéster Fosfórico Hidrolasas/genética , Pez Cebra/genética , Pez Cebra/metabolismo
2.
PLoS Genet ; 18(7): e1010340, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35905103

RESUMEN

Puf5, a Puf-family RNA-binding protein, binds to 3´ untranslated region of target mRNAs and negatively regulates their expression in Saccharomyces cerevisiae. The puf5Δ mutant shows pleiotropic phenotypes including a weakened cell wall, a temperature-sensitive growth, and a shorter lifespan. To further analyze a role of Puf5 in cell growth, we searched for a multicopy suppressor of the temperature-sensitive growth of the puf5Δ mutant in this study. We found that overexpression of CLB2 encoding B-type cyclin suppressed the temperature-sensitive growth of the puf5Δ mutant. The puf5Δ clb2Δ double mutant displayed a severe growth defect, suggesting that Puf5 positively regulates the expression of a redundant factor with Clb2 in cell cycle progression. We found that expression of CLB1 encoding a redundant B-type cyclin was decreased in the puf5Δ mutant, and that this decrease of the CLB1 expression contributed to the growth defect of the puf5Δ clb2Δ double mutant. Since Puf5 is a negative regulator of the gene expression, we hypothesized that Puf5 negatively regulates the expression of a factor that represses CLB1 expression. We found such a repressor, Ixr1, which is an HMGB (High Mobility Group box B) protein. Deletion of IXR1 restored the decreased expression of CLB1 caused by the puf5Δ mutation and suppressed the growth defect of the puf5Δ clb2Δ double mutant. The expression of IXR1 was negatively regulated by Puf5 in an IXR1 3´ UTR-dependent manner. Our results suggest that IXR1 mRNA is a physiologically important target of Puf5, and that Puf5 and Ixr1 contribute to the cell cycle progression through the regulation of the cell cycle-specific expression of CLB1.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Ciclo Celular/genética , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Proteínas HMGB/genética , Proteínas del Grupo de Alta Movilidad/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
PLoS One ; 17(5): e0268283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35522675

RESUMEN

RNA stability control contributes to the proper expression of gene products. Messenger RNAs (mRNAs) in eukaryotic cells possess a 5' cap structure and the 3' poly(A) tail which are important for mRNA stability and efficient translation. The Ccr4-Not complex is a major cytoplasmic deadenylase and functions in mRNA degradation. The CLB1-6 genes in Saccharomyces cerevisiae encode B-type cyclins which are involved in the cell cycle progression together with the cyclin-dependent kinase Cdc28. The CLB genes consist of CLB1/2, CLB3/4, and CLB5/6 whose gene products accumulate at the G2-M, S-G2, and late G1 phase, respectively. These Clb protein levels are thought to be mainly regulated by the transcriptional control and the protein stability control. Here we investigated regulation of CLB1-6 expression by Ccr4. Our results show that all CLB1-6 mRNA levels were significantly increased in the ccr4Δ mutant compared to those in wild-type cells. Clb1, Clb4, and Clb6 protein levels were slightly increased in the ccr4Δ mutant, but the Clb2, Clb3, and Clb5 protein levels were similar to those in wild-type cells. Since both CLB6 mRNA and Clb6 protein levels were most significantly increased in the ccr4Δ mutant, we further analyzed the cis-elements for the Ccr4-mediated regulation within CLB6 mRNA. We found that there were destabilizing sequences in both coding sequence and 3' untranslated region (3' UTR). The destabilizing sequences in the coding region were found to be both within and outside the sequences corresponding the cyclin domain. The CLB6 3' UTR was sufficient for mRNA destabilization and decrease of the reporter GFP gene and this destabilization involved Ccr4. Our results suggest that CLB6 expression is regulated by Ccr4 through the coding sequence and 3' UTR of CLB6 mRNA.


Asunto(s)
Ciclina B , Ribonucleasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Regiones no Traducidas 3'/genética , Ciclina B/metabolismo , Ciclinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Biochem Biophys Res Commun ; 570: 125-130, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34280615

RESUMEN

There are two major deadenylase complexes, Ccr4-Not and Pan2-Pan3, which shorten the 3' poly(A) tail of mRNA and are conserved from yeast to human. We have previously shown that the Ccr4-mediated deadenylation plays the important role in gene expression regulation in the yeast stationary phase cell. In order to further understand the role of deadenylases in different growth condition, in this study we investigated the effect of deletion of both deadenylases on the cell in non-fermentable carbon containing media. We found that both ccr4Δ and ccr4Δ pan2Δ mutants showed similar growth defect in YPD media: when switched to media containing non-fermentable source (Glycerol-Lactate) only the ccr4Δ grew while the ccr4Δ pan2Δ did not. Ccr4, Pan2, and Pan3 were phosphorylated in GlyLac medium, suggesting that the activities of Ccr4, Pan2, and Pan3 may be regulated by phosphorylation in response to change of carbon sources. To get insights how Ccr4 and Pan2 function in the cell growth in media containing non-fermentable source only, we isolated multicopy suppressors for the growth defect on YPGlyLac media of the ccr4Δ pan2Δ mutant and identified two genes, STM1 and REX2, which encode a ribosome-associated protein and a 3'-5' RNA exonuclease, respectively. Our results suggest that the Pan2-Pan3 complex, together with the Ccr4-Not complex, has important roles in the growth on non-fermentable carbon sources.


Asunto(s)
Carbono/farmacología , Fermentación , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proliferación Celular/efectos de los fármacos , Medios de Cultivo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mutación/genética , Fosforilación/efectos de los fármacos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos
5.
Sci Rep ; 11(1): 11919, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099851

RESUMEN

Selective autophagy requires the autophagy receptor specifically localizing to the target for degradation. In the budding yeast, Atg39 and Atg40 function as an autophagy receptor for the endoplasmic reticulum (ER)-selective autophagy, referred to as ER-phagy. The expression level of the ATG39 gene is increased in response to ER stress and nitrogen starvation. Under unstressed conditions, ATG39 transcription is repressed by Mig1/2 repressors. ER stress activates Snf1 AMP-activated protein kinase (AMPK), which negatively regulates Mig1/2 and consequently derepresses ATG39 transcription. However, ATG39 expression is still induced by ER stress and nitrogen starvation in the absence of Snf1, suggesting that additional molecules are involved in regulation of ATG39 expression. Here, we identify Msn2/4 transcription factors as an activator of ATG39 transcription. Not only ATG39 promoter activity but also ER-phagy are downregulated by loss of Msn2/4 and disruption of Msn2/4-binding consensus sequences located in the ATG39 promoter. We also find that the cAMP-dependent protein kinase pathway is involved in Msn2/4-mediated transcriptional regulation of ATG39. Our results suggest that yeast ER-phagy is appropriately controlled through modulation of the expression level of the ER-phagy receptor involving multiple signaling pathways and transcription factors.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Regiones Promotoras Genéticas/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo
6.
PLoS One ; 16(5): e0251456, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33984024

RESUMEN

Pbp1, the yeast ortholog of human Ataxin-2, was originally isolated as a poly(A) binding protein (Pab1)-binding protein. Pbp1 regulates the Pan2-Pan3 deadenylase complex, thereby modulating the mRNA stability and translation efficiency. However, the physiological significance of Pbp1 remains unclear since a yeast strain harboring PBP1 deletion grows similarly to wild-type strain on normal glucose-containing medium. In this study, we found that Pbp1 has a role in cell growth on the medium containing non-fermentable carbon sources. While the pbp1Δ mutant showed a similar growth compared to the wild-type cell on a normal glucose-containing medium, the pbp1Δ mutant showed a slower growth on the medium containing glycerol and lactate. Microarray analyses revealed that expressions of the genes involved in gluconeogenesis, such as PCK1 and FBP1, and of the genes involved in mitochondrial function, such as COX10 and COX11, were decreased in the pbp1Δ mutant. Pbp1 regulated the expressions of PCK1 and FBP1 via their promoters, while the expressions of COX10 and COX11 were regulated by Pbp1, not through their promoters. The decreased expressions of COX10 and COX11 in the pbp1Δ mutant were recovered by the loss of Dcp1 decapping enzyme or Xrn1 5'-3'exonuclease. Our results suggest that Pbp1 regulates the expressions of the genes involved in gluconeogenesis and mitochondrial function through multiple mechanisms.


Asunto(s)
Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Ataxina-2/metabolismo , Carbono/metabolismo , Fermentación , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Gluconeogénesis , Humanos , Proteínas de Unión a Poli(A)/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Genes Cells ; 26(6): 381-398, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33764672

RESUMEN

CCR4 and POP2 genes encode the catalytic subunit of the Ccr4-Not complex involved in shortening mRNA poly(A) tail in Saccharomyces cerevisiae. The ccr4Δ and pop2∆ mutants exhibit pleiotropic phenotypes such as slow and temperature-sensitive growth, aberrant expression of glucose repression genes and abnormal cell wall synthesis. We previously found that the growth defect of the ccr4Δ and pop2∆ mutants is suppressed by deletion of the PBP1 gene, which encodes poly(A)-binding protein (Pab1)-binding protein 1. In this study, we investigated the functional relationship between Ccr4/Pop2 and Pbp1 by measuring changes in gene expression in ccr4Δ and pop2∆ single mutants and ccr4Δ pbp1∆ and pop2∆ pbp1∆ double mutants. We found that expression of HSP12, HSP26, PIR3, FUS1 and GPH1 was increased in ccr4Δ and pop2∆ single mutants. The pbp1∆ mutation not only restored the growth defect but also reduced the increased expression of those genes found in the ccr4Δ and pop2∆ mutants. Over-expression of PBP1 in the ccr4Δ mutant further increased the expression of HSP12, HSP26, PIR3 and FUS1 and exacerbated the cell growth. These results suggest that the aberrant expression of a subset of genes, which is facilitated by Pbp1, contributes to the pleiotropic phenotypes of the ccr4Δ and pop2∆ mutants.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación Fúngica de la Expresión Génica , Mutación/genética , Ribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Proliferación Celular/genética , Ambiente , Eliminación de Gen , Modelos Biológicos , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/genética , Regulación hacia Arriba/genética
8.
Biosci Biotechnol Biochem ; 85(6): 1452-1459, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33784392

RESUMEN

eIF4E-binding proteins (4E-BPs) are translational repressors that compete with eIF4G for binding to eIF4E. Here we investigated the roles of yeast 4E-BPs, Eap1, and Caf20 in cell wall integrity pathway and gene expression. We found that eap1∆ mutation, but not caf20∆ mutation, showed synthetic growth defect with mutation in ROM2 gene encoding Rho1 GEF. The eap1∆ mutation also showed synthetic lethality with mutation in CCR4 gene encoding cytoplasmic deadenylase. Ccr4 functions in the degradation of LRG1 mRNA encoding Rho1 GAP. Eap1-Y109A L114A, which could not bind to eIF4E, did not suppress the synthetic lethality of eap1∆ ccr4∆ mutant, suggesting that 4E-binding of Eap1 is important for its function. We also found that eap1∆ mutant showed the derepression of stress response gene HSP12. 4E-binding of Eap1 was also required for the repression of HSP12 expression. Our results indicate that Eap1 has similar but independent roles in cell growth and gene expression with Ccr4.


Asunto(s)
Proliferación Celular , Regulación Fúngica de la Expresión Génica , Ribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Mutación , Saccharomyces cerevisiae/genética
9.
EMBO J ; 40(2): e104712, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33346378

RESUMEN

Apical constriction is critical for epithelial morphogenesis, including neural tube formation. Vertebrate apical constriction is induced by di-phosphorylated myosin light chain (ppMLC)-driven contraction of actomyosin-based circumferential rings (CRs), also known as perijunctional actomyosin rings, around apical junctional complexes (AJCs), mainly consisting of tight junctions (TJs) and adherens junctions (AJs). Here, we revealed a ppMLC-triggered system at TJ-associated CRs for vertebrate apical constriction involving microtubules, LUZP1, and myosin phosphatase. We first identified LUZP1 via unbiased screening of microtubule-associated proteins in the AJC-enriched fraction. In cultured epithelial cells, LUZP1 was found localized at TJ-, but not at AJ-, associated CRs, and LUZP1 knockout resulted in apical constriction defects with a significant reduction in ppMLC levels within CRs. A series of assays revealed that ppMLC promotes the recruitment of LUZP1 to TJ-associated CRs, where LUZP1 spatiotemporally inhibits myosin phosphatase in a microtubule-facilitated manner. Our results uncovered a hitherto unknown microtubule-LUZP1 association at TJ-associated CRs that inhibits myosin phosphatase, contributing significantly to the understanding of vertebrate apical constriction.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Microtúbulos/metabolismo , Uniones Estrechas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Uniones Adherentes/metabolismo , Animales , Línea Celular , Pollos , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Miosinas/metabolismo , Células Sf9
10.
PLoS Genet ; 16(9): e1009053, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32986716

RESUMEN

Autophagy is a fundamental process responsible for degradation and recycling of intracellular contents. In the budding yeast, non-selective macroautophagy and microautophagy of the endoplasmic reticulum (ER) are caused by ER stress, the circumstance where aberrant proteins accumulate in the ER. The more recent study showed that protein aggregation in the ER initiates ER-selective macroautophagy, referred to as ER-phagy; however, the mechanisms by which ER stress induces ER-phagy have not been fully elucidated. Here, we show that the expression levels of ATG39, encoding an autophagy receptor specific for ER-phagy, are significantly increased under ER-stressed conditions. ATG39 upregulation in ER stress response is mediated by activation of its promoter, which is positively regulated by Snf1 AMP-activated protein kinase (AMPK) and negatively by Mig1 and Mig2 transcriptional repressors. In response to ER stress, Snf1 promotes nuclear export of Mig1 and Mig2. Our results suggest that during ER stress response, Snf1 mediates activation of the ATG39 promoter and consequently facilitates ER-phagy by negatively regulating Mig1 and Mig2.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Regulación Fúngica de la Expresión Génica , Microorganismos Modificados Genéticamente , Mitofagia/fisiología , Mutación , Fosforilación , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Life Sci Alliance ; 2(4)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31399484

RESUMEN

The paracellular barrier function of tight junctions (TJs) in epithelial cell sheets is robustly maintained against mechanical fluctuations, by molecular mechanisms that are poorly understood. Vinculin is an adaptor of a mechanosensory complex at the adherens junction. Here, we generated vinculin KO Eph4 epithelial cells and analyzed their confluent cell-sheet properties. We found that vinculin is dispensable for the basic TJ structural integrity and the paracellular barrier function for larger solutes. However, vinculin is indispensable for the paracellular barrier function for ions. In addition, TJs stochastically showed dynamically distorted patterns in vinculin KO cell sheets. These KO phenotypes were rescued by transfecting full-length vinculin and by relaxing the actomyosin tension with blebbistatin, a myosin II ATPase activity inhibitor. Our findings indicate that vinculin resists mechanical fluctuations to maintain the TJ paracellular barrier function for ions in epithelial cell sheets.


Asunto(s)
Células Epiteliales/citología , Vinculina/genética , Vinculina/metabolismo , Actomiosina/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Iones/metabolismo , Procesos Estocásticos , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo
12.
PLoS One ; 14(4): e0215064, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30973945

RESUMEN

The S. cerevisiae Pop2 protein is an exonuclease in the Ccr4-Not complex that is a conserved regulator of gene expression. Pop2 regulates gene expression post-transcriptionally by shortening the poly(A) tail of mRNA. A previous study has shown that Pop2 is phosphorylated at threonine 97 (T97) by Yak1 protein kinase in response to glucose limitation. However, the physiological importance of Pop2 phosphorylation remains unknown. In this study, we found that Pop2 is phosphorylated at serine 39 (S39) under unstressed conditions. The dephosphorylation of S39 was occurred rapidly after glucose depletion, and the addition of glucose to the glucose-deprived culture recovered this phosphorylation, suggesting that Pop2 phosphorylation at S39 is regulated by glucose. This glucose-regulated phosphorylation of Pop2 at S39 is dependent on Pho85 kinase. We previously reported that Pop2 takes a part in the cell wall integrity pathway by regulating LRG1 mRNA; however, S39 phosphorylation of Pop2 is not involved in LRG1 expression. On the other hand, Pop2 phosphorylation at S39 is involved in the expression of HSP12 and HSP26, which encode a small heat shock protein. In the medium supplemented with glucose, Pop2 might be phosphorylated at S39 by Pho85 kinase, and this phosphorylation contributes to repress the expression of HSP12 and HSP26. Glucose starvation inactivated Pho85, which resulted in the derepression of HSP12 and HSP26, together with other glucose sensing mechanisms. Our results suggest that Pho85-dependent phosphorylation of Pop2 is a part of the glucose sensing system in yeast.


Asunto(s)
Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Proteínas de Choque Térmico/metabolismo , Ribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Represión Catabólica , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Choque Térmico/genética , Fosforilación , Ribonucleasas/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/química
13.
Genes Cells ; 23(12): 988-997, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30281869

RESUMEN

The PUF RNA-binding protein Puf5 is involved in regulation of the cell wall integrity (CWI) pathway in yeast. Puf5 negatively regulates expression of LRG1 mRNA, encoding for a GTPase-activating protein for Rho1 small GTPase. Here, we further analyzed the effect of Puf5 on LRG1 expression, together with Ccr4 and Pop2 deadenylases, Dhh1 decapping activator, and other PUF proteins. We found that the growth defect of puf5∆ mutant was enhanced by ccr4∆ mutation, which was partially suppressed by LRG1 deletion. Consistently, Lrg1 protein level was much more up-regulated in ccr4Δ puf5Δ double mutant than in each single mutant. Interestingly, LRG1 poly(A) tail length was longer in ccr4∆ mutant but not in puf5∆ mutant. Thus, Puf5 regulates LRG1 expression independently from Ccr4, although Puf5 recruits the Ccr4-Not deadenylase complex for mRNA destabilization. Unexpectedly, puf6Δ mutation suppressed the growth defect caused by ccr4Δ puf5∆ mutation. Loss of Rpl43a and Rpl43b ribosomal proteins, the previously identified Puf6 interactors, also suppressed the growth defect of ccr4Δ puf5Δ mutant. Our results suggest that Puf5 functions in the CWI pathway by regulating LRG1 expression in a deadenylase-independent manner, and that Puf6 is involved in the Ccr4- and Puf5-mediated regulation of cell growth through association with Rpl43.


Asunto(s)
Pared Celular/metabolismo , Proteínas Activadoras de GTPasa/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Activadoras de GTPasa/metabolismo , Mutación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo
14.
Sci Rep ; 8(1): 13078, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30166606

RESUMEN

Expression control of the protein phosphatase is critically involved in crosstalk and feedback of the cellular signaling. In the budding yeast ER stress response, multiple signaling pathways are activated and play key roles in adaptive reactions. However, it remains unclear how the expression level of the protein phosphatase is modulated during ER stress response. Here, we show that ER stress increases expression of Ptp2 tyrosine phosphatase and Cmp2 calcineurin phosphatase. Upregulation of Ptp2 is due to transcriptional activation mediated by Mpk1 MAP kinase and Rlm1 transcription factor. This induction is important for Ptp2 to effectively downregulate the activity of Hog1 MAP kinase. The budding yeast genome possesses two genes, CMP2 and CNA1, encoding the catalytic subunit of calcineurin phosphatase. CMP2 is more important than CNA1 not only in ER stress response, but also in salt stress response. Higher promoter activity of CMP2 contributes to its relative functional significance in ER stress response, but is less important for salt stress response. Thus, our results suggest that expression control of Ptp2 and Cmp2 protein phosphatases at the promoter level is crucial for adaptive responses to ER stress.


Asunto(s)
Adaptación Fisiológica , Calcineurina/metabolismo , Estrés del Retículo Endoplásmico , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Calcineurina/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Regiones Promotoras Genéticas/genética , Proteínas Tirosina Fosfatasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Cloruro de Sodio/toxicidad , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
15.
Sci Rep ; 7: 46713, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28429799

RESUMEN

AMP-activated protein kinase (AMPK) is an evolutionarily conserved heterotrimeric kinase complex consisting of a catalytic subunit, α, and two regulatory subunits, ß and γ. Previously, we demonstrated that Snf1, the Saccharomyces cerevisiae ortholog of AMPK, negatively regulates the unfolded protein response (UPR) pathway and the Hog1 MAP kinase pathway in ER stress response. However, it remains unclear how the alternate three ß subunits, Sip1, Sip2, and Gal83, of the Snf1 complex participate in ER stress response. Here, we show that Gal83 plays a major role in Snf1-mediated downregulation of the UPR and Hog1 pathways. Gal83 is the most abundant ß subunit in the normal state and further induced by ER stress. This induction is mediated via activation of the GAL83 promoter by the UPR. When expressed under the control of the GAL83 promoter, Sip2 exhibits potent functional activity equivalent to Gal83. Our results suggest that the functional significance of the ß subunit of Snf1 AMPK in ER stress response is defined by modulation of the expression level through regulation of the promoter activity.


Asunto(s)
Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Estrés del Retículo Endoplásmico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Respuesta de Proteína Desplegada/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética
16.
mSphere ; 1(5)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27704052

RESUMEN

Ccr4, a component of the Ccr4-Not cytoplasmic deadenylase complex, is known to be required for the cell wall integrity (CWI) pathway in the budding yeast Saccharomyces cerevisiae. However, it is not fully understood how Ccr4 and other components of the Ccr4-Not complex regulate the CWI pathway. Previously, we showed that Ccr4 functions in the CWI pathway together with Khd1 RNA binding protein. Ccr4 and Khd1 modulate a signal from Rho1 small GTPase in the CWI pathway by regulating the expression of ROM2 mRNA and LRG1 mRNA, encoding a guanine nucleotide exchange factor (GEF) and a GTPase-activating protein (GAP) for Rho1, respectively. Here we examined the possible involvement of the POP2 gene encoding a subunit of the Ccr4-Not complex and the DHH1 gene encoding a DEAD box RNA helicase that associates with the Ccr4-Not complex in the regulation of ROM2 and LRG1 expression. Neither ROM2 mRNA level nor Rom2 function was impaired by pop2Δ or dhh1Δ mutation. The LRG1 mRNA level was increased in pop2Δ and dhh1Δ mutants, as well as the ccr4Δ mutant, and the growth defects caused by pop2Δ and dhh1Δ mutations were suppressed by lrg1Δ mutation. Our results suggest that LRG1 expression is regulated by Ccr4 together with Pop2 and Dhh1 and that ROM2 expression is regulated by Khd1 and Ccr4, but not by Pop2 and Dhh1. Thus, Rho1 activity in the CWI pathway is precisely controlled by modulation of the mRNA levels for Rho1-GEF Rom2 and Rho1-GAP Lrg1. IMPORTANCE We find here that Ccr4, Pop2, and Dhh1 modulate the levels of mRNAs for specific Rho1 regulators, Rom2 and Lrg1. In budding yeast, Rho1 activity is tightly regulated both temporally and spatially. It is anticipated that Ccr4, Pop2, and Dhh1 may contribute to the precise spatiotemporal control of Rho1 activity by regulating expression of its regulators temporally and spatially. Our finding on the roles of the components of the Ccr4-Not complex in yeast would give important information for understanding the roles of the evolutionary conserved Ccr4-Not complex.

17.
PLoS Genet ; 11(9): e1005491, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26394309

RESUMEN

Accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER) causes ER stress. Snf1, the Saccharomyces cerevisiae ortholog of AMP-activated protein kinase (AMPK), plays a crucial role in the response to various environmental stresses. However, the role of Snf1 in ER stress response remains poorly understood. In this study, we characterize Snf1 as a negative regulator of Hog1 MAPK in ER stress response. The snf1 mutant cells showed the ER stress resistant phenotype. In contrast, Snf1-hyperactivated cells were sensitive to ER stress. Activated Hog1 levels were increased by snf1 mutation, although Snf1 hyperactivation interfered with Hog1 activation. Ssk1, a specific activator of MAPKKK functioning upstream of Hog1, was induced by ER stress, and its induction was inhibited in a manner dependent on Snf1 activity. Furthermore, we show that the SSK1 promoter is important not only for Snf1-modulated regulation of Ssk1 expression, but also for Ssk1 function in conferring ER stress tolerance. Our data suggest that Snf1 downregulates ER stress response signal mediated by Hog1 through negatively regulating expression of its specific activator Ssk1 at the transcriptional level. We also find that snf1 mutation upregulates the unfolded protein response (UPR) pathway, whereas Snf1 hyperactivation downregulates the UPR activity. Thus, Snf1 plays pleiotropic roles in ER stress response by negatively regulating the Hog1 MAPK pathway and the UPR pathway.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/biosíntesis , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Respuesta de Proteína Desplegada/genética
18.
PLoS Genet ; 9(2): e1003315, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23437011

RESUMEN

MAP kinases are integral to the mechanisms by which cells respond to a wide variety of environmental stresses. In Caenorhabditis elegans, the KGB-1 JNK signaling pathway regulates the response to heavy metal stress. In this study, we identified FOS-1, a bZIP transcription factor, as a target of KGB-1-mediated phosphorylation. We further identified two transcriptional targets of the KGB-1 pathway, kreg-1 and kreg-2/lys-3, which are required for the defense against heavy metal stress. FOS-1 plays a critical role in the transcriptional repression of the kreg-1 gene by recruiting histone deacetylase (HDAC) to its promoter. KGB-1 phosphorylation prevents FOS-1 dimerization and promoter binding, resulting in promoter derepression. Thus, HDAC behaves as a co-repressor modulating FOS-1-mediated transcriptional regulation. This study describes the direct link from JNK signaling, Fos phosphorylation, and regulation of kreg gene transcription, which modulates the stress response in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Histona Desacetilasas , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-fos , Estrés Fisiológico/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Fosforilación , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/fisiología , Activación Transcripcional
19.
Nat Neurosci ; 15(4): 551-7, 2012 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-22388962

RESUMEN

The ability of neurons to undergo regenerative growth after injury is governed by cell-intrinsic and cell-extrinsic regeneration pathways. These pathways represent potential targets for therapies to enhance regeneration. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, the Jun N-terminal kinase (JNK) and p38 MAP kinase (MAPK) pathways are important for axon regeneration. We found that the C. elegans SVH-1 growth factor and its receptor, SVH-2 tyrosine kinase, regulate axon regeneration. Loss of SVH-1-SVH-2 signaling resulted in a substantial defect in the ability of neurons to regenerate, whereas its activation improved regeneration. Furthermore, SVH-1-SVH-2 signaling was initiated extrinsically by a pair of sensory neurons and functioned upstream of the JNK-MAPK pathway. Thus, SVH-1-SVH-2 signaling via activation of the MAPK pathway acts to coordinate neuron regeneration response after axon injury.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Regeneración Nerviosa/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Axones/enzimología , Caenorhabditis elegans , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Datos de Secuencia Molecular
20.
Eukaryot Cell ; 10(10): 1340-7, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21873511

RESUMEN

The Saccharomyces cerevisiae RNA-binding protein Khd1/Hek2 associates with hundreds of potential mRNA targets preferentially, including the mRNAs encoding proteins localized to the cell wall and plasma membrane. We have previously revealed that Khd1 positively regulates expression of MTL1 mRNA encoding a membrane sensor in the cell wall integrity (CWI) pathway. However, a khd1Δ mutation has no detectable phenotype on cell wall synthesis. Here we show that the khd1Δ mutation causes a severe cell lysis when combined with the deletion of the CCR4 gene encoding a cytoplasmic deadenylase. We identified the ROM2 mRNA, encoding a guanine nucleotide exchange factor (GEF) for Rho1, as a target for Khd1 and Ccr4. The ROM2 mRNA level was decreased in the khd1Δ ccr4Δ mutant, and ROM2 overexpression suppressed the cell lysis of the khd1Δ ccr4Δ mutant. We also found that Ccr4 negatively regulates expression of the LRG1 mRNA encoding a GTPase-activating protein (GAP) for Rho1. The LRG1 mRNA level was increased in the ccr4Δ and khd1Δ ccr4Δ mutants, and deletion of LRG1 suppressed the cell lysis of the khd1Δ ccr4Δ mutant. Our results presented here suggest that Khd1 and Ccr4 modulate a signal from Rho1 in the CWI pathway by regulating the expression of RhoGEF and RhoGAP.


Asunto(s)
Pared Celular/metabolismo , Ribonucleasas/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Pared Celular/enzimología , Pared Celular/genética , Proteínas Activadoras de GTPasa/metabolismo , Regulación Fúngica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho , Ribonucleasas/genética , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA