RESUMEN
Carcinogenesis results from the sequential acquisition of oncogenic mutations that convert normal cells into invasive, metastasizing cancer cells. Colorectal cancer exemplifies this process through its well-described adenoma-carcinoma sequence, modeled previously using clustered regularly interspaced short palindromic repeats (CRISPR) to induce four consecutive mutations in wild-type human gut organoids. Here, we demonstrate that long-term culture of mismatch-repair-deficient organoids allows the selection of spontaneous oncogenic mutations through the sequential withdrawal of Wnt agonists, epidermal growth factor (EGF) agonists and the bone morphogenetic protein (BMP) antagonist Noggin, while TP53 mutations were selected through the addition of Nutlin-3. Thus, organoids sequentially acquired mutations in AXIN1 and AXIN2 (Wnt pathway), TP53, ACVR2A and BMPR2 (BMP pathway) and NRAS (EGF pathway), gaining complete independence from stem cell niche factors. Quadruple-pathway (Wnt, EGF receptor, p53 and BMP) mutant organoids formed solid tumors upon xenotransplantation. This demonstrates that carcinogenesis can be recapitulated in a DNA repair-mutant background through in vitro selection that targets four consecutive cancer pathways.
RESUMEN
Recent advances in research suggest that aging has a controllable chronic inflammatory disease aspect. Aging systemic T cells, which secrete pro-inflammatory factors, affect surrounding somatic cells, and accelerate the aging process through chronic inflammation, have attracted attention as potential therapeutic targets in aging. On the other hand, there are few reports on the aging of the intestinal immune system, which differs from the systemic immune system in many ways. In the current study, we investigated the age-related changes in the intestinal immune system, particularly in T cells. The most significant changes were observed in the CD4+ T cells in the small intestinal IEL, with a marked increase in this fraction in old mice and reduced expression of CD27 and CD28, which are characteristic of aging systemic T cells. The proliferative capacity of aging IEL CD4+ T cells was significantly more reduced than that of aging systemic T cells. Transcriptome analysis showed that the expression of inflammatory cytokines was not upregulated, whereas Cd8α, NK receptors, and Granzymes were upregulated in aging IEL CD4+ T cells. Functional analysis showed that aging IEL T cells had a higher cytotoxic function against intestinal tumor organoids in vitro than young IEL T cells. scRNAseq revealed that splenic T cells show a transition from naïve to memory T cells, whereas intestinal T cells show the emergence of a CD8αα+CD4+ T cell fraction in aged mice, which is rarely seen in young cells. Further analysis of the aging IEL CD4+ T cells showed that two unique subsets are increased that are distinct from the systemic CD4+ T cells. Subset 1 has a pro-inflammatory component, with expression of IFNγ and upregulation of NFkB signaling pathways. Subset 2 does not express IFNγ, but upregulates inhibitory molecules and nIEL markers. Expression of granzymes and Cd8a was common to both. These fractions were in opposite positions in the clustering by UMAP and had different TCR repertoires. They may be involved in the suppression of intestinal aging and longevity through anti-tumor immunity, elimination of senescent cells and stressed cells in the aging environment. This finding could be a breakthrough in aging research.
Asunto(s)
Linfocitos Intraepiteliales , Ratones , Animales , Linfocitos T CD4-Positivos , Granzimas , Subgrupos de Linfocitos T , Análisis de la Célula IndividualRESUMEN
Current techniques for producing induced-pluripotent-stem-cell-derived mid/hindgut spheroids have faced major hurdles in consistency and reproducibility. Here, we present a protocol that uses mid/hindgut cells to generate homogeneous spheroids that subsequently mature into human intestinal organoids (HIOs). We describe steps for stepwise differentiation and spheroid formation using a 96-well plate. We then detail cell maturation in a suspended state and the implementation of a rotational bioreactor platform to maximize the culture efficiency of larger HIOs. For complete details on the use and execution of this protocol, please refer to Takahashi et al.1.
Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Humanos , Reproducibilidad de los Resultados , Intestinos , Reactores BiológicosRESUMEN
BACKGROUND: The organoids therapy for ulcerative colitis (UC) is under development. It is important to dissect how the engrafted epithelium can provide benefits for overcoming the vulnerability to inflammation. We mainly focused on the deliverability of sulfomucin, which is reported to play an important role in epithelial function. METHODS: We analyzed each segment of colon epithelium to determine differences in sulfomucin production in both mice and human. Subsequently, we transplanted organoids established from sulfomucin-enriched region into the injured recipient epithelium following dextran sulfate sodium-induced colitis and analyzed the engrafted epithelium in mouse model. RESULTS: In human normal colon, sulfomucin production was increased in proximal colon, whereas it was decreased in the inflammatory region of UC. In murine colon epithelium, increased sulfomucin production was found in cecum compared to distal small intestine and proximal colon. RNA sequencing analysis revealed that several key genes associated with sulfomucin production such as Papss2 and Slc26a1 were enriched in isolated murine cecum crypts. Then we established murine cecum organoids and transplanted them into the injured epithelium of distal colon. Although the expression of sulfomucin was temporally decreased in cecum organoids, its secretion was restored again in the engrafted patches after transplantation. Finally, we verified a part of mechanisms controlling sulfomucin production in human samples. CONCLUSION: This study illustrated the deliverability of sulfomucin in the disease-relevant grafting model to design sulfomucin-producing epithelial units in severely injured distal colon. The current study is the basis for the better promotion of organoids transplantation therapy for refractory UC.
Asunto(s)
Colitis Ulcerosa , Colitis , Humanos , Ratones , Animales , Colitis/inducido químicamente , Colon/metabolismo , Colitis Ulcerosa/terapia , Colitis Ulcerosa/metabolismo , Organoides , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismoRESUMEN
BACKGROUND: Inflammatory bowel disease (IBD) is characterized by idiopathic and chronic inflammation arising elsewhere within the gastrointestinal tract. Consequently, the mucosal tissue is destroyed during the active phase of the disease, and therefore, spontaneous repair of damaged tissue is required to restore the function and long-term homeostasis of the intestinal mucosa. Also, in patients with refractory Crohn's disease, loss of massive intestinal function can lead to short bowel syndrome or may lead to fatal intestinal failure. SUMMARY: The concept of mucosal healing shares the idea that both regulation of mucosal inflammation and repair of the damaged mucosa are critical to achieve the ideal clinical outcome in patients with IBD. However, current treatments lack the option of those targeted to mucosal repair, and therefore, patients must achieve mucosal healing depending on their intrinsic system. To counteract inflammation-induced mucosal damage, various biologics or cell-based treatments are currently being developed. In the early developmental phase, various growth factors have been tested for their ability to promote mucosal repair. However, most of these factors did not show clinical benefit, except the recombinant glucagon-like peptide-2 (GLP-2). On the contrary, cell-based treatments are rapidly emerging, using both somatic stem cells and pluripotent stem cells. KEY MESSAGES: In this review, we focus on the current state of factor-based or cell-based regenerative medicine in the treatment of IBD. Additionally, we would like to introduce current examples of tissue engineering technologies and provide future prospects for the application of regenerative medicine in IBD.
Asunto(s)
Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Medicina Regenerativa , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedad de Crohn/terapia , Mucosa Intestinal/metabolismo , Inflamación/metabolismoRESUMEN
Human intestinal organoids (HIOs) derived from human pluripotent stem cells (hPSCs) hold great promise for translational medical applications. A common method to obtain HIOs has been to harvest floating hindgut spheroids arising from hPSCs. As this technique is elegant but burdensome due to the complex protocol and line-to-line variability, a more feasible method is desired. Here, we establish a robust differentiation method into suspension-cultured HIOs (s-HIOs) by seeding dissociated cells on a spheroid-forming plate. This protocol realizes the reliable generation of size-controllable spheroids. Under optimized conditions in a rotating bioreactor, the generated spheroids quickly grow and mature into large s-HIOs with supporting mesenchyme. Upon mesenteric transplantation, s-HIOs further mature and develop complex tissue architecture in vivo. This method demonstrates that intestinal tissue can be generated from iPSC-derived HIOs via suspension induction and bioreactor maturation, establishing a reliable culture platform with wide applications in regenerative medicine.
Asunto(s)
Intestinos , Células Madre Pluripotentes , Humanos , Organoides , Sistema Digestivo , Reactores BiológicosRESUMEN
BACKGROUND: The emerging concepts of fetal-like reprogramming following tissue injury have been well recognized as an important cue for resolving regenerative mechanisms of intestinal epithelium during inflammation. We previously revealed that the remodeling of mesenchyme with collagen fibril induces YAP/TAZ-dependent fate conversion of intestinal/colonic epithelial cells covering the wound bed towards fetal-like progenitors. To fully elucidate the mechanisms underlying the link between extracellular matrix (ECM) remodeling of mesenchyme and fetal-like reprogramming of epithelial cells, it is critical to understand how collagen type I influence the phenotype of epithelial cells. In this study, we utilize collagen sphere, which is the epithelial organoids cultured in purified collagen type I, to understand the mechanisms of the inflammatory associated reprogramming. Resolving the entire landscape of regulatory networks of the collagen sphere is useful to dissect the reprogrammed signature of the intestinal epithelium. METHODS: We performed microarray, RNA-seq, and ATAC-seq analyses of the murine collagen sphere in comparison with Matrigel organoid and fetal enterosphere (FEnS). We subsequently cultured human colon epithelium in collagen type I and performed RNA-seq analysis. The enriched genes were validated by gene expression comparison between published gene sets and immunofluorescence in pathological specimens of ulcerative colitis (UC). RESULTS: The murine collagen sphere was confirmed to have inflammatory and regenerative signatures from RNA-seq analysis. ATAC-seq analysis confirmed that the YAP/TAZ-TEAD axis plays a central role in the induction of the distinctive signature. Among them, TAZ has implied its relevant role in the process of reprogramming and the ATAC-based motif analysis demonstrated not only Tead proteins, but also Fra1 and Runx2, which are highly enriched in the collagen sphere. Additionally, the human collagen sphere also showed a highly significant enrichment of both inflammatory and fetal-like signatures. Immunofluorescence staining confirmed that the representative genes in the human collagen sphere were highly expressed in the inflammatory region of ulcerative colitis. CONCLUSIONS: Collagen type I showed a significant influence in the acquisition of the reprogrammed inflammatory signature in both mice and humans. Dissection of the cell fate conversion and its mechanisms shown in this study can enhance our understanding of how the epithelial signature of inflammation is influenced by the ECM niche.
RESUMEN
The epithelial-to-mesenchymal transition (EMT) is considered a transcriptional process that induces a switch in cells from a polarized state to a migratory phenotype. Here, we show that KSR1 and ERK promote EMT-like phenotype through the preferential translation of Epithelial-Stromal Interaction 1 (EPSTI1), which is required to induce the switch from E- to N-cadherin and coordinate migratory and invasive behavior. EPSTI1 is overexpressed in human colorectal cancer (CRC) cells. Disruption of KSR1 or EPSTI1 significantly impairs cell migration and invasion in vitro, and reverses EMT-like phenotype, in part, by decreasing the expression of N-cadherin and the transcriptional repressors of E-cadherin expression, ZEB1 and Slug. In CRC cells lacking KSR1, ectopic EPSTI1 expression restored the E- to N-cadherin switch, migration, invasion, and anchorage-independent growth. KSR1-dependent induction of EMT-like phenotype via selective translation of mRNAs reveals its underappreciated role in remodeling the translational landscape of CRC cells to promote their migratory and invasive behavior.
The majority of cancer deaths result from tumor cells spreading to other parts of the body via a process known as metastasis. 90% of all cancers originate in epithelial cells that line the inner and outer surface of organs in our bodies. Epithelial cells, however, are typically stationary and must undergo various chemical and physical changes to transform in to migratory cells that can invade other tissues. This transformation process alters the amount of protein cells use to interact with one another. For example, epithelial cells from the colon produce less of a protein called E-cadherin as they transition into migrating cancer cells and make another protein called N-cadherin instead. A protein called KSR1 is a key component of a signaling pathway that is responsible for generating the proteins colon cancer cells need to survive. But it is unknown which proteins KSR1 helps synthesize and whether it plays a role in the metastasis of colon cancer cells. To investigate this, Rao et al. studied the proteins generated by cancerous colon cells cultured in the laboratory, in the presence and absence of KSR1. The experiment showed that KSR1 increases the levels of a protein called EPSTI1, which colon cancer cells need to transform into migratory cells. Depleting KSR1 caused cancer cells to generate less EPSTI1 and to share more features with healthy cells, such as higher levels of E-cadherin on their surface and reduced mobility. Adding EPSTI1 to the cancer cells that lacked KSR1 restored the traits associated with metastasis, such as high levels of N-cadherin, and allowed the cells to move more easily. These findings suggest that KSR1 and EPSTI1 could be new drug targets for reducing, or potentially reversing, the invasive behavior of colon cancer cells. However, further investigation is needed to reveal how EPSTI1 is generated and how this protein helps colon cancer cells move and invade other tissues.
Asunto(s)
Cadherinas/metabolismo , Transición Epitelial-Mesenquimal , Proteínas de Neoplasias/metabolismo , Proteínas Quinasas/metabolismo , Cadherinas/genética , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Proteínas Quinasas/genética , Factores de TranscripciónRESUMEN
Notch signaling is activated in the intestinal epithelial cells (IECs) of patients with inflammatory bowel disease (IBD), and contributes to mucosal regeneration. Our previous study indicated that TNF-α and Notch signaling may synergistically promote the expression of the intestinal stem cell (ISC) marker OLFM4 in human IECs. In the present study, we investigated the gene regulation and function of OLFM4 in human IEC lines. We confirmed that TNF-α and Notch synergistically upregulate the mRNA expression of OLFM4. Luciferase reporter assay showed that OLFM4 transcription is regulated by the synergy of TNF-α and Notch. At the protein level, synergy between TNF-α and Notch promoted cytoplasmic accumulation of OLFM4, which has potential anti-apoptotic properties in human IECs. Analysis of patient-derived tissues and organoids consistently showed cytoplasmic accumulation of OLFM4 in response to NF-κB and Notch activation. Cytoplasmic accumulation of OLFM4 in human IECs is tightly regulated by Notch and TNF-α in synergy. Such cytoplasmic accumulation of OLFM4 may have a cell-protective role in the inflamed mucosa of patients with IBD.
RESUMEN
Inflammatory bowel disease (IBD) comprises two major subtypes, ulcerative colitis (UC) and Crohn's disease, which are multifactorial diseases that may develop due to genetic susceptibility, dysbiosis, or environmental factors. Environmental triggers of IBD include food-borne factors, and a previous nationwide survey in Japan identified pre-illness consumption of isoflavones as a risk factor for UC. However, the precise mechanisms involved in the detrimental effects of isoflavones on the intestinal mucosa remain unclear. The present study employed human colonic organoids (hCOs) to investigate the functional effect of two representative isoflavones, genistein and daidzein, on human colonic epithelial cells. The addition of genistein to organoid reformation assays significantly decreased the number and size of reformed hCOs compared with control and daidzein treatment, indicating an inhibitory effect of genistein on colonic cell/progenitor cell function. Evaluation of the phosphorylation status of 49 different receptor tyrosine kinases showed that genistein selectively inhibited phosphorylation of epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (HGFR). We established a two-dimensional wound-repair model using hCOs and showed that genistein significantly delayed the overall wound-repair response. Our results collectively show that genistein may exert its detrimental effects on the intestinal mucosa via negative regulation of stem/progenitor cell function, possibly leading to sustained mucosal injury and the development of UC.
RESUMEN
BACKGROUND & AIMS: The reason why small intestinal cancer is rarer than colorectal cancer is not clear. We hypothesized that intraepithelial lymphocytes (IELs), which are enriched in the small intestine, are the closest immune cells to epithelial cells, exclude tumor cells via cell-to-cell contact. METHODS: We developed DPE-green fluorescent protein (DPE-GFP) × adenomatous polyposis coli; multiple intestinal neoplasia (APCmin ) mice, which is a T-cell-reporter mouse with spontaneous intestinal tumors. We visualized the dynamics of IELs in the intestinal tumor microenvironment and the interaction between IELs and epithelial cells, and the roles of cell-to-cell contact in anti-intestinal tumor immunity using a novel in vivo live-imaging system and a novel in vitro co-culture system. RESULTS: In the small intestinal tumor microenvironment, T-cell movement was restricted around blood vessels and the frequency of interaction between IELs and epithelial cells was reduced. Genetic deletion of CD103 decreased the frequency of interaction between IELs and epithelial cells, and increased the number of small intestinal tumors. In the co-culture system, wild-type IELs expanded and infiltrated to intestinal tumor organoids from APCmin mice and reduced the viability of them, which was cell-to-cell contact and CD103 dependent. CONCLUSIONS: The abundance of IELs in the small intestine may contribute to a low number of tumors, although this system may not work in the colon because of the sparseness of IELs. Strategies to increase the number of IELs in the colon or enhance cell-to-cell contact between IELs and epithelial cells may be effective for the prevention of intestinal tumors in patients with a high cancer risk.
Asunto(s)
Antígenos CD/fisiología , Comunicación Celular , Cadenas alfa de Integrinas/fisiología , Mucosa Intestinal/inmunología , Neoplasias Intestinales/prevención & control , Intestino Delgado/inmunología , Linfocitos Intraepiteliales/inmunología , Microambiente Tumoral , Animales , Técnicas de Cocultivo , Femenino , Mucosa Intestinal/citología , Neoplasias Intestinales/inmunología , Neoplasias Intestinales/metabolismo , Neoplasias Intestinales/patología , Intestino Delgado/patología , Linfocitos Intraepiteliales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Organoides/inmunología , Organoides/patologíaRESUMEN
5-Fluorouracil (5-FU) remains the first-line treatment for colorectal cancer (CRC). Although 5-FU initially de-bulks the tumor mass, recurrence after chemotherapy is the barrier to effective clinical outcomes for CRC patients. Here, we demonstrate that p53 promotes WNT3 transcription, leading to activation of the WNT/ß-catenin pathway in ApcMin/+/Lgr5EGFP mice, CRC patient-derived tumor organoids (PDTOs) and patient-derived tumor cells (PDCs). Through this regulation, 5-FU induces activation and enrichment of cancer stem cells (CSCs) in the residual tumors, contributing to recurrence after treatment. Combinatorial treatment of a WNT inhibitor and 5-FU effectively suppresses the CSCs and reduces tumor regrowth after discontinuation of treatment. These findings indicate p53 as a critical mediator of 5-FU-induced CSC activation via the WNT/ß-catenin signaling pathway and highlight the significance of combinatorial treatment of WNT inhibitor and 5-FU as a compelling therapeutic strategy to improve the poor outcomes of current 5-FU-based therapies for CRC patients.
Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Fluorouracilo/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Células HCT116 , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Ratones Transgénicos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/patología , Pirazinas/administración & dosificación , Piridinas/administración & dosificación , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteína Wnt3/genética , Proteína Wnt3/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Microscopy analysis of tumour samples is commonly performed on fixed, thinly sectioned and protein-labelled tissues. However, these examinations do not reveal the intricate three-dimensional structures of tumours, nor enable the detection of aberrant transcripts. Here, we report a method, which we name DIIFCO (for diagnosing in situ immunofluorescence-labelled cleared oncosamples), for the multimodal volumetric imaging of RNAs and proteins in intact tumour volumes and organoids. We used DIIFCO to spatially profile the expression of diverse coding RNAs and non-coding RNAs at the single-cell resolution in a variety of cancer tissues. Quantitative single-cell analysis revealed spatial niches of cancer stem-like cells, and showed that the niches were present at a higher density in triple-negative breast cancer tissue. The improved molecular phenotyping and histopathological diagnosis of cancers may lead to new insights into the biology of tumours of patients.
Asunto(s)
Imagenología Tridimensional , Neoplasias/patología , Análisis de la Célula Individual , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biopsia , Embrión de Mamíferos/metabolismo , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Ratones , Imagen Multimodal , Neoplasias/metabolismo , Fenotipo , ARN/metabolismoRESUMEN
The intestinal epithelium is known as one of the most regenerative tissues in our body. The lining of the intestine is composed of a single layer of epithelial cells generated by rapidly renewing stem cells residing at the crypt bottoms, resulting in a flow of cells to the villus tips. The stereotypical crypt-villus architecture makes the intestine an ideal model for stem cell research. Based on recent advances in research of stem cell niche signals in vivo, we have established an intestinal epithelial stem cell culture method. Under this culture condition, single Lgr5+ intestinal stem cells (ISCs) or isolated whole crypts efficiently expand into three-dimensional spherical structures recapitulating the intestinal crypt-villus organization. These organoids can be passaged weekly and maintained for years in culture. Moreover, they can be cryopreserved. As intestinal organoids recapitulate many aspects of the epithelial biology and are amenable to most, if not all, current experimental manipulations, they are widely used to study stem cell biology, cell fate determination, gene function, and disease mechanism.
Asunto(s)
Mucosa Intestinal/citología , Organoides/citología , Animales , Células Cultivadas , Inmunohistoquímica , Mucosa Intestinal/metabolismo , Ratones , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Nicho de Células Madre/genética , Nicho de Células Madre/fisiología , Células Madre/citología , Células Madre/metabolismoRESUMEN
Mechanical complications (MCs) following acute myocardial infarction (AMI), such as ventricular septal rupture (VSR), free-wall rupture (FWR), and papillary muscle rupture (PMR), are fatal. However, the risk factors of in-hospital mortality among patients with MCs have not been previously reported in Japan. The purpose of this study was to evaluate the prognostic factors of in-hospital mortality in these patients. The study cohort consisted of 233 consecutive patients with MCs from the registry of 10 facilities in the Cardiovascular Research Consortium-8 Universities (CIRC-8U) in East Japan between 1997 and 2014 (2.3% of 10,278 AMI patients). The authors conducted a retrospective observational study to analyse the correlation between the subtypes of MCs with in-hospital mortality, clinical data, and medical treatment. We observed a decreasing incidence of MC (1997-2004: 3.7%, 2005-2010: 2.1%, 2011-2014: 1.9%, p < 0.001). In-hospital mortality among patients with MCs was 46%. Thirty-three percent of patients with MCs were not able to undergo surgical repair due to advanced age or severe cardiogenic shock. In-hospital mortality among patients who had undergone surgical repair was 29% (VSR: 21%, FWR: 33%, PMR: 60%). In patients with MCs, hazard ratio for in-hospital mortality according to multivariate analysis of without surgical repair was 5.63 (95% CI 3.54-8.95). In patients with surgical repair, the hazard ratios of blow-out-type FWR (5.53, 95% confidence interval (CI) 2.22-13.76), those with renal dysfunction (3.11, 95% CI 1.37-7.05), and those receiving venoarterial extracorporeal membrane oxygenation (VA-ECMO) (3.79, 95% CI 1.81-7.96) were significantly high. Although primary percutaneous coronary intervention (PCI) is associated with decreased incidence of MCs, high in-hospital mortality persisted in patients with MCs that also presented with renal dysfunction and in those requiring VA-ECMO. Early detection and surgical repair of MCs are essential.
Asunto(s)
Rotura Cardíaca Posinfarto/mortalidad , Mortalidad Hospitalaria , Infarto del Miocardio/mortalidad , Choque Cardiogénico/mortalidad , Anciano , Anciano de 80 o más Años , Femenino , Rotura Cardíaca Posinfarto/fisiopatología , Rotura Cardíaca Posinfarto/terapia , Hospitalización , Humanos , Incidencia , Japón/epidemiología , Masculino , Persona de Mediana Edad , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Sistema de Registros , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Choque Cardiogénico/fisiopatología , Choque Cardiogénico/terapia , Factores de Tiempo , Resultado del TratamientoRESUMEN
Various species of the intestinal microbiota have been associated with the development of colorectal cancer1,2, but it has not been demonstrated that bacteria have a direct role in the occurrence of oncogenic mutations. Escherichia coli can carry the pathogenicity island pks, which encodes a set of enzymes that synthesize colibactin3. This compound is believed to alkylate DNA on adenine residues4,5 and induces double-strand breaks in cultured cells3. Here we expose human intestinal organoids to genotoxic pks+ E. coli by repeated luminal injection over five months. Whole-genome sequencing of clonal organoids before and after this exposure revealed a distinct mutational signature that was absent from organoids injected with isogenic pks-mutant bacteria. The same mutational signature was detected in a subset of 5,876 human cancer genomes from two independent cohorts, predominantly in colorectal cancer. Our study describes a distinct mutational signature in colorectal cancer and implies that the underlying mutational process results directly from past exposure to bacteria carrying the colibactin-producing pks pathogenicity island.