Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biophys J ; 123(4): 421-423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38263691
2.
Synth Biol (Oxf) ; 8(1): ysad016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149045

RESUMEN

Recent advances in bottom-up synthetic biology have made it possible to reconstitute cellular systems from non-living components, yielding artificial cells with potential applications in industry, medicine and basic research. Although a variety of cellular functions and components have been reconstituted in previous studies, sustained biological energy production remains a challenge. ATP synthesis via ribulose-1,5-diphosphate carboxylase/oxygenase (RuBisCO), a central enzyme in biological CO2 fixation, holds potential as an energy production system, but its feasibility in a cell-free expression system has not yet been tested. In this study, we test RuBisCO expression and its activity-mediated ATP synthesis in a reconstituted Escherichia coli-based cell-free translation system. We then construct a system in which ATP is synthesized by RuBisCO activity in giant vesicles and used as energy for translation reactions. These results represent an advance toward independent energy production in artificial cells. Graphical Abstract.

3.
PLoS Genet ; 19(8): e1010471, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37540715

RESUMEN

The integration of individually replicating genes into a primitive chromosome is a key evolutionary transition in the development of life, allowing the simultaneous inheritance of genes. However, how this transition occurred is unclear because the extended size of primitive chromosomes replicate slower than unlinked genes. Theoretical studies have suggested that a primitive chromosome can evolve in the presence of cell-like compartments, as the physical linkage prevents the stochastic loss of essential genes upon division, but experimental support for this is lacking. Here, we demonstrate the evolution of a chromosome-like RNA from two cooperative RNA replicators encoding replication and metabolic enzymes. Through their long-term replication in cell-like compartments, linked RNAs emerged with the two cooperative RNAs connected end-to-end. The linked RNAs had different mutation patterns than the two unlinked RNAs, suggesting that they were maintained as partially distinct lineages in the population. Our results provide experimental evidence supporting the plausibility of the evolution of a primitive chromosome from unlinked gene fragments, an important step in the emergence of complex biological systems.


Asunto(s)
Cromosomas , ARN , ARN/genética , Mutación , Evolución Molecular
4.
Chem Sci ; 14(28): 7656-7664, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37476714

RESUMEN

The emergence of RNA self-reproduction from prebiotic components would have been crucial in developing a genetic system during the origins of life. However, all known self-reproducing RNA molecules are complex ribozymes, and how they could have arisen from abiotic materials remains unclear. Therefore, it has been proposed that the first self-reproducing RNA may have been short oligomers that assemble their components as templates. Here, we sought such minimal RNA self-reproduction in prebiotically accessible short random RNA pools that undergo spontaneous ligation and recombination. By examining enriched RNA families with common motifs, we identified a 20-nucleotide (nt) RNA variant that self-reproduces via template-directed ligation of two 10 nt oligonucleotides. The RNA oligomer contains a 2'-5' phosphodiester bond, which typically forms during prebiotically plausible RNA synthesis. This non-canonical linkage helps prevent the formation of inactive complexes between self-complementary oligomers while decreasing the ligation efficiency. The system appears to possess an autocatalytic property consistent with exponential self-reproduction despite the limitation of forming a ternary complex of the template and two substrates, similar to the behavior of a much larger ligase ribozyme. Such a minimal, ribozyme-independent RNA self-reproduction may represent the first step in the emergence of an RNA-based genetic system from primordial components. Simultaneously, our examination of random RNA pools highlights the likelihood that complex species interactions were necessary to initiate RNA reproduction.

5.
PLoS Comput Biol ; 18(12): e1010709, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36454734

RESUMEN

How the complexity of primitive self-replication molecules develops through Darwinian evolution remains a mystery with regards to the origin of life. Theoretical studies have proposed that coevolution with parasitic replicators increases network complexity by inducing inter-dependent replication. Particularly, Takeuchi and Hogeweg proposed a complexification process of replicator networks by successive appearance of a parasitic replicator followed by the addition of a new host replicator that is resistant to the parasitic replicator. However, the feasibility of such complexification with biologically relevant molecules is still unknown owing to the lack of an experimental model. Here, we investigated the plausible complexification pathway of host-parasite replicators using both an experimental host-parasite RNA replication system and a theoretical model based on the experimental system. We first analyzed the parameter space that allows for sustainable replication in various replication networks ranging from a single molecule to three-member networks using computer simulation. The analysis shows that the most plausible complexification pathway from a single host replicator is the addition of a parasitic replicator, followed by the addition of a new host replicator that is resistant to the parasite, consistent with the previous study by Takeuchi and Hogeweg. We also provide evidence that the pathway actually occurred in our previous evolutionary experiment. These results provide experimental evidence that a population of a single replicator spontaneously evolves into multi-replicator networks through coevolution with parasitic replicators.


Asunto(s)
Parásitos , Animales , Simulación por Computador , ARN
6.
RNA ; 28(12): 1659-1667, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36195345

RESUMEN

RNA has been used as a model molecule to understand the adaptive evolution process owing to the simple relationship between the structure (i.e., phenotype) and sequence (i.e., genotype). RNA usually forms multiple substructures with similar thermodynamic stabilities, called structural fluctuations. Ancel and Fontana theoretically proposed that structural fluctuation is directly related to the ease of change in structures by mutations and thus works as a source of adaptive evolution; however, experimental verification is limited. Here, we analyzed 76 RNA genotypes that appeared in our previous in vitro evolution to examine whether (i) RNA fluctuation decreases as adaptive evolution proceeds and (ii) RNAs that have larger fluctuations tend to have higher frequencies of beneficial mutations. We first computationally estimated the structural fluctuations of all RNAs and observed that they tended to decrease as their fitness increased. We next measured the frequency of beneficial mutations for 10 RNA genotypes and observed that the total number of beneficial mutations was correlated with the size of the structural fluctuations. These results consistently support the idea that the structural fluctuation of RNA, at least those evaluated in our study, works as a source of adaptive evolution.


Asunto(s)
Evolución Molecular , ARN , Mutación , ARN/genética , ARN/química , Genotipo , Termodinámica
7.
Nat Commun ; 13(1): 1460, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304447

RESUMEN

In prebiotic evolution, self-replicating molecules are believed to have evolved into complex living systems by expanding their information and functions open-endedly. Theoretically, such evolutionary complexification could occur through successive appearance of novel replicators that interact with one another to form replication networks. Here we perform long-term evolution experiments of RNA that replicates using a self-encoded RNA replicase. The RNA diversifies into multiple coexisting host and parasite lineages, whose frequencies in the population initially fluctuate and gradually stabilize. The final population, comprising five RNA lineages, forms a replicator network with diverse interactions, including cooperation to help the replication of all other members. These results support the capability of molecular replicators to spontaneously develop complexity through Darwinian evolution, a critical step for the emergence of life.


Asunto(s)
Parásitos , ARN , Animales , Evolución Molecular , Origen de la Vida , Parásitos/genética , ARN/genética , ARN Polimerasa Dependiente del ARN/genética
8.
Life (Basel) ; 11(3)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670881

RESUMEN

Sustainable replication and evolution of genetic molecules such as RNA are likely requisites for the emergence of life; however, these processes are easily affected by the appearance of parasitic molecules that replicate by relying on the function of other molecules, while not contributing to their replication. A possible mechanism to repress parasite amplification is compartmentalization that segregates parasitic molecules and limits their access to functional genetic molecules. Although extent cells encapsulate genomes within lipid-based membranes, more primitive materials or simple geological processes could have provided compartmentalization on early Earth. In this review, we summarize the current understanding of the types and roles of primitive compartmentalization regarding sustainable replication of genetic molecules, especially from the perspective of the prevention of parasite replication. In addition, we also describe the ability of several environments to selectively accumulate longer genetic molecules, which could also have helped select functional genetic molecules rather than fast-replicating short parasitic molecules.

9.
Biotechnol Bioeng ; 118(4): 1736-1749, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33501662

RESUMEN

The reconstructed in vitro translation system known as the PURE system has been used in a variety of cell-free experiments such as the expression of native and de novo proteins as well as various display methods to select for functional polypeptides. We developed a refined PURE-based display method for the preparation of stable messenger RNA (mRNA) and complementary DNA (cDNA)-peptide conjugates and validated its utility for in vitro selection. Our conjugate formation efficiency exceeded 40%, followed by gel purification to allow minimum carry-over of components from the translation system to the downstream assay enabling clean and efficient random peptide sequence screening. We chose the commercially available anti-FLAG M2 antibody as a target molecule for validation. Starting from approximately 1.7 × 1012 random sequences, a round-by-round high-throughput sequencing showed clear enrichment of the FLAG epitope DYKDDD as well as revealing consensus FLAG epitope motif DYK(D/L/N)(L/Y/D/N/F)D. Enrichment of core FLAG motifs lacking one of the four key residues (DYKxxD) indicates that Tyr (Y) and Lys (K) appear as the two key residues essential for binding. Furthermore, the comparison between mRNA display and cDNA display method resulted in overall similar performance with slightly higher enrichment for mRNA display. We also show that gel purification steps in the refined PURE-based display method improve conjugate formation efficiency and enhance the enrichment rate of FLAG epitope motifs in later rounds of selection especially for mRNA display. Overall, the generalized procedure and consistent performance of two different display methods achieved by the commercially available PURE system will be useful for future studies to explore the sequence and functional space of diverse polypeptides.


Asunto(s)
ADN Complementario/genética , Epítopos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Biblioteca de Péptidos , ARN Mensajero/genética , Humanos
10.
Life (Basel) ; 12(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35054425

RESUMEN

A change from RNA- to DNA-based genetic systems is hypothesized as a major transition in the evolution of early life forms. One of the possible requirements for this transition is a change in the substrate specificity of the replication enzyme. It is largely unknown how such changes would have occurred during early evolutionary history. In this study, we present evidence that an RNA replication enzyme that has evolved in the absence of deoxyribonucleotide triphosphates (dNTPs) relaxes its substrate specificity and incorporates labeled dNTPs. This result implies that ancient replication enzymes, which probably evolved in the absence of dNTPs, could have incorporated dNTPs to synthesize DNA soon after dNTPs became available. The transition from RNA to DNA, therefore, might have been easier than previously thought.

11.
Chem Commun (Camb) ; 56(87): 13453-13456, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33043949

RESUMEN

We report RNA self-replication through the translation of its encoded protein within membrane-free compartments generated by liquid-liquid phase separation. The aqueous droplets support RNA self-replication by concentrating a genomic RNA and translation proteins, facilitating the uptake of small substrates, and preventing the replication of parasitic RNAs through compartmentalization.


Asunto(s)
Biosíntesis de Proteínas , ARN/biosíntesis , ARN/genética
12.
Elife ; 92020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32690137

RESUMEN

In prebiotic evolution, molecular self-replicators are considered to develop into diverse, complex living organisms. The appearance of parasitic replicators is believed inevitable in this process. However, the role of parasitic replicators in prebiotic evolution remains elusive. Here, we demonstrated experimental coevolution of RNA self-replicators (host RNAs) and emerging parasitic replicators (parasitic RNAs) using an RNA-protein replication system we developed. During a long-term replication experiment, a clonal population of the host RNA turned into an evolving host-parasite ecosystem through the continuous emergence of new types of host and parasitic RNAs produced by replication errors. The host and parasitic RNAs diversified into at least two and three different lineages, respectively, and they exhibited evolutionary arms-race dynamics. The parasitic RNA accumulated unique mutations, thus adding a new genetic variation to the whole replicator ensemble. These results provide the first experimental evidence that the coevolutionary interplay between host-parasite molecules plays a key role in generating diversity and complexity in prebiotic molecular evolution.


Asunto(s)
Evolución Molecular , Interacciones Huésped-Parásitos/genética , Mutación/genética , Parásitos/genética , Filogenia , ARN/genética , Origen de Réplica/genética , Animales , Modelos Biológicos
13.
RNA ; 26(1): 83-90, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31690585

RESUMEN

Single-stranded RNAs (ssRNAs) are utilized as genomes in some viruses and also in experimental models of ancient life-forms, owing to their simplicity. One of the largest problems for ssRNA replication is the formation of double-stranded RNA (dsRNA), a dead-end product for ssRNA replication. A possible strategy to avoid dsRNA formation is to create strong intramolecular secondary structures of ssRNA. To design ssRNAs that efficiently replicate by Qß replicase with minimum dsRNA formation, we previously proposed the "fewer unpaired GC rule." According to this rule, ssRNAs that have fewer unpaired G and C bases in the secondary structure should efficiently replicate with less dsRNA formation. However, the validity of this rule still needs to be examined, especially for longer ssRNAs. Here, we analyze nine long ssRNAs that successively appeared during an in vitro evolution of replicable ssRNA by Qß replicase and examine whether this rule can explain the structural transitions of the RNAs. We found that these ssRNAs improved their template abilities step-by-step with decreasing dsRNA formation as mutations accumulated. We then examine the secondary structures of all the RNAs by a chemical modification method. The analysis of the structures revealed that the probabilities of unpaired G and C bases tended to decrease gradually in the course of evolution. The decreases were caused by the local structural changes around the mutation sites in most of the cases. These results support the validity of the "fewer unpaired GC rule" to efficiently design replicable ssRNAs by Qß replicase, useful for more complex ssRNA replication systems.


Asunto(s)
Conformación de Ácido Nucleico , Q beta Replicasa/metabolismo , ARN/química , Emparejamiento Base , Evolución Molecular , Técnicas In Vitro , Modelos Moleculares , Mutación , Q beta Replicasa/genética , ARN/genética , ARN Bicatenario/química , ARN Bicatenario/genética
15.
Chembiochem ; 20(18): 2331-2335, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31037814

RESUMEN

RNA-based genomes are used to synthesize artificial cells that harbor genome replication systems. Previously, continuous replication of an artificial genomic RNA that encoded an RNA replicase was demonstrated. The next important challenge is to expand such genomes by increasing the number of encoded genes. However, technical difficulties are encountered during such expansions because the introduction of new genes disrupts the secondary structure of RNA and makes RNA nonreplicable through replicase. Herein, a fusion method that enables the construction of a longer RNA from two replicable RNAs, while retaining replication capability, is proposed. Two replicable RNAs that encode different genes at various positions are fused, and a new parameter, the unreplicable index, which negatively correlates with the replication ability of the fused RNAs better than that of the previous parameter, is determined. The unreplicable index represents the expected value of the number of G or C nucleotides that are unpaired in both the template and complementary strands. It is also observed that some of the constructed fused RNAs replicate efficiently by using the internally translated replicase. The method proposed herein could contribute to the development of an expanded RNA genome that can be used for the purpose of artificial cell synthesis.


Asunto(s)
Genoma , Q beta Replicasa/genética , ARN/genética , Escherichia coli/enzimología , Ingeniería Genética/métodos
16.
Life (Basel) ; 9(1)2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30795529

RESUMEN

The origins of life require the emergence of informational polymers capable of reproduction. In the RNA world on the primordial Earth, reproducible RNA molecules would have arisen from a mixture of compositionally biased, poorly available, short RNA sequences in prebiotic environments. However, it remains unclear what level of sequence diversity within a small subset of population is required to initiate RNA reproduction by prebiotic mechanisms. Here, using a simulation for template-directed recombination and ligation, we explore the effect of sequence diversity in a given population for the onset of RNA reproduction. We show that RNA reproduction is improbable in low and high diversity of finite populations; however, it could robustly occur in an intermediate sequence diversity. The intermediate range broadens toward higher diversity as population size increases. We also found that emergent reproducible RNAs likely form autocatalytic networks and collectively reproduce by catalyzing the formation of each other, allowing the expansion of information capacity. These results highlight the potential of abiotic RNAs, neither abundant nor diverse, to kick-start autocatalytic reproduction through spontaneous network formation.

17.
Chem Commun (Camb) ; 55(14): 2090-2093, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30694272

RESUMEN

We report empirically and theoretically that multiple prebiotic minerals can selectively accumulate longer RNAs, with selectivity enhanced at higher temperatures. We further demonstrate that surfaces can be combined with a catalytic RNA to form longer RNA polymers, supporting the potential of minerals to develop genetic information on the early Earth.


Asunto(s)
Minerales/química , ARN/química , Adsorción , Catálisis , Planeta Tierra , Calor , Origen de la Vida , Propiedades de Superficie
18.
RNA ; 25(4): 453-464, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30670484

RESUMEN

There are several plausible abiotic synthetic routes from prebiotic chemical materials to ribonucleotides and even short RNA oligomers. However, for refinement of the RNA World hypothesis to help explain the origins of life on the Earth, there needs to be a manner by which such oligomers can increase their length and expand their sequence diversity. Oligomers longer than at least 10-20 nucleotides would be needed for raw material for subsequent natural selection. Here, we explore spontaneous RNA-RNA recombination as a facile means by which such length and diversity enhancement could have been realized. Motivated by the discovery that RNA oligomers stored for long periods of time in the freezer expand their lengths, we systematically investigated RNA-RNA recombination processes. In addition to one known mechanism, we discovered at least three new mechanisms. In these, one RNA oligomer acts as a splint to catalyze the hybridization of two other oligomers and facilitates the attack of a 5'-OH, a 3'-OH, or a 2'-OH nucleophile of one oligomer onto a target atom of another. This leads to the displacement of one RNA fragment and the production of new recombinant oligomers. We show that this process can explain the spontaneous emergence of sequence complexity, both in vitro and in silico.


Asunto(s)
Oligorribonucleótidos/química , ARN/química , Recombinación Genética , Emparejamiento Base , Secuencia de Bases , Variación Genética , Modelos Químicos , Oligorribonucleótidos/síntesis química , Oligorribonucleótidos/genética , Origen de la Vida , ARN/síntesis química , ARN/genética
19.
Protein Eng Des Sel ; 32(11): 481-487, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32533140

RESUMEN

Phi29 DNA polymerase is widely used for DNA amplification through rolling-circle replication or multiple displacement amplification. Here, we performed completely in vitro artificial evolution of phi29 DNA polymerase by combining the in vitro compartmentalization and the gene expression-coupled rolling-circle replication of a circular DNA encoding the polymerase. We conducted the experiments in six different conditions composed of three different levels of inhibitor concentrations with two different DNA labeling methods. One of the experiments was performed in our previous study and the other five experiments were newly conducted in this study. Under all conditions, we found several mutations that enhance the rolling-circle amplification by the polymerase when it was expressed in the reconstituted gene expression system. Especially, a combinatorial mutant polymerase (K555T/D570N) exhibits significantly higher rolling-circle activity than the wild type. These highly active mutant polymerases would be useful for various applications.


Asunto(s)
Fagos de Bacillus/enzimología , ADN Polimerasa Dirigida por ADN/genética , Evolución Molecular Dirigida/métodos , Técnicas de Amplificación de Ácido Nucleico , ADN Polimerasa Dirigida por ADN/metabolismo , Expresión Génica , Mutación
20.
Sci Rep ; 8(1): 12366, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120331

RESUMEN

A small (~10 cm) male pufferfish (Torquigener albomaculosus) builds a large (~2 m) sandy nest structure, resembling a mysterious crop circle, to attract females. The circle consists of radially arranged deep ditches in the outer ring region, and maze-like shallow ditches in the central region. The configuration is geometrical. Here, we examined the process of the outer ring construction, and extracted the 'rules' followed by the pufferfish. During construction, the pufferfish repeatedly excavates ditches from the outside in. Generally, excavation starts at lower positions, and occurs in straight lines. The entry position, the length, and the direction of each ditch were recorded. A simulation program based on these data successfully reproduced the circle pattern, suggesting that the complex circle structure can be created by the repetition of simple actions by the pufferfish.


Asunto(s)
Tetraodontiformes/fisiología , Animales , Femenino , Masculino , Reproducción/fisiología , Conducta Sexual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA