Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trop Med Infect Dis ; 9(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38922040

RESUMEN

Leptospirosis is a zoonotic disease caused by the spirochete bacteria Leptospira spp. From December 2017 to December 2023, a total of 34 canine leptospirosis cases were reported in urban Sydney, Australia. During the same spatio-temporal frame, one locally acquired human case was also reported. As it was hypothesised that human residents and companion dogs might both be exposed to pathogenic Leptospira in community green spaces in Sydney, an environmental survey was conducted from December 2023 to January 2024 to detect the presence of pathogenic Leptospira DNA in multipurpose, recreational public parks in the council areas of the Inner West and City of Sydney, Australia. A total of 75 environmental samples were collected from 20 public parks that were easily accessible by human and canine visitors. Quantitative PCR (qPCR) testing targeting pathogenic and intermediate Leptospira spp. was performed, and differences in detection of Leptospira spp. between dog-allowed and dog-prohibited areas were statistically examined. The global Moran's Index was calculated to identify any spatial autocorrelation in the qPCR results. Pathogenic leptospires were detected in all 20 parks, either in water or soil samples (35/75 samples). Cycle threshold (Ct) values were slightly lower for water samples (Ct 28.52-39.10) compared to soil samples (Ct 33.78-39.77). The chi-squared test and Fisher's exact test results were statistically non-significant (p > 0.05 for both water and soil samples), and there was no spatial autocorrelation detected in the qPCR results (p > 0.05 for both sample types). Although further research is now required, our preliminary results indicate the presence of pathogenic Leptospira DNA and its potential ubiquity in recreational parks in Sydney.

2.
PLoS One ; 19(2): e0294570, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38349924

RESUMEN

Johne's disease (JD), caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a global burden for livestock producers and has an association with Crohn's disease in humans. Within MAP there are two major lineages, S/Type I/TypeIII and C/Type II, that vary in phenotype including culturability, host preference and virulence. These lineages have been identified using the IS1311 element, which contains a conserved, single nucleotide polymorphism. IS1311 and the closely related IS1245 element belong to the IS256 family of insertion sequences, are dispersed throughout M. avium taxa but remain poorly characterised. To investigate the distribution and diversity of IS1311 in MAP, 805 MAP genomes were collated from public databases. IS1245 was absent, while IS1311 sequence, copy number and insertion loci were conserved between MAP S lineages and varied within the MAP C lineage. One locus was specific to the S strains, which contained nine IS1311 copies. In contrast, C strains contained either seven or eight IS1311 loci. Most insertion loci were associated with the boundaries of homologous regions that had undergone genome rearrangement between the MAP lineages, suggesting that this sequence may be a driver of recombination. Phylogenomic geographic clustering of MAP subtypes was demonstrated for the first time, at continental scale, and indicated that there may have been recent MAP transmission between Europe and North America, in contrast to Australia where importation of live ruminants is generally prohibited. This investigation confirmed the utility of IS1311 typing in epidemiological studies and resolved anomalies in past studies. The results shed light on potential mechanisms of niche/host adaptation, virulence of MAP and global transmission dynamics.


Asunto(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Humanos , Mycobacterium avium subsp. paratuberculosis/genética , Adaptación al Huésped , Paratuberculosis/microbiología , Polimorfismo de Nucleótido Simple , Rumiantes/genética , Elementos Transponibles de ADN
3.
Sci Rep ; 12(1): 9681, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690602

RESUMEN

Pathogenic mycobacteria including Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, manipulate host macrophages to persist and cause disease. In mycobacterial infection, highly plastic macrophages, shift between inflammatory M1 and permissive M2 phenotypes which alter the disease outcome and allow bacteria to survive intracellularly. Here we examine the impact of MAP infection on polarised macrophages and how increased lipid availability alters macrophage phenotype and bacterial persistence. Further, we assess if host microRNA (miRNA) are sensitive to macrophage polarisation state and how MAP can drive their expression to overcome innate responses. Using in vitro MAP infection, we find that increasing lipid availability through supplementing culture media with exogenous lipid increases cellular nitric oxide production. Lipid-associated miRs -19a, -129, -24, and -24-3p are differentially expressed following macrophage polarisation and lipid supplementation and are further regulated during MAP infection. Collectively, our results highlight the importance of host lipid metabolism in MAP infection and demonstrate control of miRNA expression by MAP to favour intracellular persistence.


Asunto(s)
MicroARNs , Infecciones por Mycobacterium , Mycobacterium avium subsp. paratuberculosis , Animales , Metabolismo de los Lípidos , Lípidos , Macrófagos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Infecciones por Mycobacterium/metabolismo
4.
Front Microbiol ; 13: 892333, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602010

RESUMEN

Mycobacterium avium is separated into four subspecies: M. avium subspecies avium (MAA), M. avium subspecies silvaticum (MAS), M. avium subspecies hominissuis (MAH), and M. avium subspecies paratuberculosis (MAP). Understanding the mechanisms of host and tissue adaptation leading to their clinical significance is vital to reduce the economic, welfare, and public health concerns associated with diseases they may cause in humans and animals. Despite substantial phenotypic diversity, the subspecies nomenclature is controversial due to high genetic similarity. Consequently, a set of 1,230 M. avium genomes was used to generate a phylogeny, investigate SNP hotspots, and identify subspecies-specific genes. Phylogeny reiterated the findings from previous work and established that Mycobacterium avium is a species made up of one highly diverse subspecies, known as MAH, and at least two clonal pathogens, named MAA and MAP. Pan-genomes identified coding sequences unique to each subspecies, and in conjunction with a mapping approach, mutation hotspot regions were revealed compared to the reference genomes for MAA, MAH, and MAP. These subspecies-specific genes may serve as valuable biomarkers, providing a deeper understanding of genetic differences between M. avium subspecies and the virulence mechanisms of mycobacteria. Furthermore, SNP analysis demonstrated common regions between subspecies that have undergone extensive mutations during niche adaptation. The findings provide insights into host and tissue specificity of this genetically conserved but phenotypically diverse species, with the potential to provide new diagnostic targets and epidemiological and therapeutic advances.

5.
Front Vet Sci ; 8: 637637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33659287

RESUMEN

Mycobacterium avium subspecies paratuberculosis (MAP) is the aetiological agent of Johne's disease (JD), a chronic enteritis that causes major losses to the global livestock industry. Further, it has been associated with human Crohn's disease. Several strains of MAP have been identified, the two major groups being sheep strain MAP, which includes the Type I and Type III sub-lineages, and the cattle strain or Type II MAP lineage, of which bison strains are a sub-grouping. Major genotypic, phenotypic and pathogenic variations have been identified in prior comparisons, but the research has predominately focused on cattle strains of MAP. In countries where the sheep industries are more prevalent, however, such as Australia and New Zealand, ovine JD is a substantial burden. An information gap exists regarding the genomic differences between sheep strain sub-lineages and the relevance of Type I and Type III MAP in terms of epidemiology and/or pathogenicity. We therefore investigated sheep MAP isolates from Australia and New Zealand using whole genome sequencing. For additional context, sheep MAP genome datasets were downloaded from the Sequence Read Archive and GenBank. The final dataset contained 18 Type III and 16 Type I isolates and the K10 cattle strain MAP reference genome. Using a pan-genome approach, an updated global phylogeny for sheep MAP from de novo assemblies was produced. When rooted with the K10 cattle reference strain, two distinct clades representing the lineages were apparent. The Australian and New Zealand isolates formed a distinct sub-clade within the type I lineage, while the European type I isolates formed another less closely related group. Within the type III lineage, isolates appeared more genetically diverse and were from a greater number of continents. Querying of the pan-genome and verification using BLAST analysis revealed lineage-specific variations (n = 13) including genes responsible for metabolism and stress responses. The genetic differences identified may represent important epidemiological and virulence traits specific to sheep MAP. This knowledge will potentially contribute to improved vaccine development and control measures for these strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...