RESUMEN
BACKGROUND/OBJECTIVES: Hypertrophic cardiomyopathy (HCM) is a common heart disorder characterized by the thickening of the heart muscle, particularly in the left ventricle, which increases the risk of cardiac complications. This study aims to analyze the expression of apoptosis-regulating genes (CASP8, CASP9, CASP3, BAX, and BCL2) in blood samples from HCM patients, to better understand their potential as biomarkers for disease progression. METHODS: Quantitative real-time PCR (qPCR) was used to evaluate gene expression in blood samples from 93 HCM patients. The correlation between apoptosis-regulating genes was conducted and clinical parameters were integrated for feature importance and clustering analysis. RESULTS: Most patients exhibited significant downregulation of CASP8, CASP9, and CASP3. In contrast, BAX expression was elevated in 71 out of 93 patients, while BCL2 was increased in 55 out of 93 patients. Correlation analysis revealed weak negative correlations between the BAX/BCL2 ratio and CASP gene expression. CONCLUSIONS: These findings suggest that reduced expression of apoptotic genes may indicate a protective cellular mechanism, which could serve as a biomarker for disease progression. Further studies are needed to investigate the potential for therapeutic modulation of these pathways to improve patient outcomes.
RESUMEN
This paper reviews the latest trends and applications of silicone in ophthalmology, especially related to intraocular lenses (IOLs). Silicone, or siloxane elastomer, as a synthetic polymer, has excellent biocompatibility, high chemical inertness, and hydrophobicity, enabling wide biomedical applications. The physicochemical properties of silicone are reviewed. A review of methods for mechanical and in vivo characterization of IOLs is presented as a prospective research area, since there are only a few available technologies, even though these properties are vital to ensure medical safety and suitability for clinical use, especially if long-term function is considered. IOLs represent permanent implants to replace the natural lens or for correcting vision, with the first commercial foldable lens made of silicone. Biological aspects of posterior capsular opacification have been reviewed, including the effects of the implanted silicone IOL. However, certain issues with silicone IOLs are still challenging and some conditions can prevent its application in all patients. The latest trends in nanotechnology solutions have been reviewed. Surface modifications of silicone IOLs are an efficient approach to further improve biocompatibility or to enable drug-eluting function. Different surface modifications, including coatings, can provide long-term treatments for various medical conditions or medical diagnoses through the incorporation of sensory functions. It is essential that IOL optical characteristics remain unchanged in case of drug incorporation and the application of nanoparticles can enable it. However, clinical trials related to these advanced technologies are still missing, thus preventing their clinical applications at this moment.