Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Sci Rep ; 14(1): 14582, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918455

RESUMEN

Volatile organic compounds (VOCs) are metabolites pivotal in determining the aroma of various products. A well-known VOC producer of industrial importance is Saccharomyces cerevisiae, partially responsible for flavor of beers and wines. We identified VOCs in beers produced by yeast strains characterized by improved aroma obtained in UV-induced mutagenesis. We observed significant increase in concentration of compounds in strains: 1214uv16 (2-phenylethyl acetate, 2- phenylethanol), 1214uv31 (2-ethyl henxan-1-ol), 1214uv33 (ethyl decanoate, caryophyllene). We observed decrease in production of 2-phenyethyl acetate in strain 1214uv33. Analysis of intracellular metabolites based on 1H NMR revealed that intracellular phenylalanine concentration was not changed in strains producing more phenylalanine related VOCs (1214uv16 and 1214uv33), so regulation of this pathway seems to be more sophisticated than is currently assumed. Metabolome analysis surprisingly showed the presence of 3-hydroxyisobutyrate, a product of valine degradation, which is considered to be absent in S. cerevisiae. Our results show that our knowledge of yeast metabolism including VOC production has gaps regarding synthesis pathways for individual metabolites and regulation mechanisms. Detailed analysis of 1214uv16 and 1214uv33 may enhance our knowledge of the regulatory mechanisms of VOC synthesis in yeast, and analysis of strain 1214uv31 may reveal the pathway of 2-ethyl henxan-1-ol biosynthesis.


Asunto(s)
Cerveza , Metaboloma , Mutación , Saccharomyces cerevisiae , Compuestos Orgánicos Volátiles , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cerveza/análisis , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Alcohol Feniletílico/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/análisis , Fermentación , Fenilalanina/metabolismo , Fenilalanina/análisis , Metabolómica/métodos , Acetatos
2.
J Environ Manage ; 365: 121514, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908152

RESUMEN

Microbial fuel cells (MFCs) have been recently proven to synthesise biosurfactants from waste products. In classic bioreactors, the efficiency of biosynthesis process can be controlled by the concentration of nitrogen content in the electrolyte. However, it was not known whether a similar control mechanism could be applied in current-generating conditions. In this work, the effect of nitrogen concentration on biosurfactant production from waste cooking oil was investigated. The concentration of NH4Cl in the electrolyte ranged from 0 to 1 g L-1. The maximum power density equal to 17.5 W m-3 was achieved at a concentration of 0.5 g L-1 (C/N = 2.32) and was accompanied by the highest surface tension decrease (to 54.6 mN m-1) and an emulsification activity index of 95.4%. Characterisation of the biosurfactants produced by the LC-MS/MS method showed the presence of eleven compounds belonging to the mono- and di-rhamnolipids group, most likely produced by P. aeruginosa, which was the most abundant (19.6%) in the community. Importantly, we have found a strong correlation (R = -0.96) of power and biosurfactant activity in response to C/N ratio. This study shows that nitrogen plays an important role in the current-generating metabolism of waste cooking oil. To the best of our knowledge, this is the first study where the nitrogen optimisation was investigated to improve the synthesis of biosurfactants and power generation in a bioelectrochemical system.

3.
Pediatr Endocrinol Diabetes Metab ; 29(3): 143-155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38031830

RESUMEN

INTRODUCTION: Atherosclerosis, a precursor to cardiovascular disease (CVD), is deeply intertwined with lipid metabolism. The metabolic process in the Down syndrome (DS) population remain less explored. Aim of the study: This study examines the lipid profiles of DS in comparison to their siblings (CG), aiming to uncover potential atherosclerotic and CVD risks. MATERIAL AND METHODS: The study included 42 people with DS (mean age 14.17 years) and the CG - 20 individuals (mean age 15.92 years). Anthropometric measurements: BMI, BMI SDS, and TMI were calculated. Lipid profile (LP) and metabolomics were determined. RESULTS: LP: DS display significantly reduced HDL (DS vs. CG: 47±10 vs. 59 ±12 mg/dl; p = 0.0001) and elevated LDL (104 ±25 vs. 90 ±22 mg/dl; p = 0.0331). Triglycerides, APO A1, and APO B/APO A1 ratio corroborate with the elevated risk of CVD in DS. Despite no marked differences in: TCH and APO B, the DS group demonstrated a concerning BMI trend. Of 31 identified metabolites, 12 showed statistical significance (acetate, choline, creatinine, formate, glutamine, histidine, lysine, proline, pyroglutamate, threonine, tyrosine, and xanthine). However, only 8 metabolites passed the FDR validation (acetate, creatinine, formate, glutamine, lysine, proline, pyroglutamate, xanthine). CONCLUSIONS: Down syndrome individuals show distinct cardiovascular risks, with decreased HDL and increased LDL levels. Combined with metabolomic disparities and higher BMI and TMI, this suggests an increased atherosclerosis risk compared to controls.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Síndrome de Down , Humanos , Niño , Adulto , Adolescente , Apolipoproteína A-I , Factores de Riesgo , Creatinina , Glutamina , Lisina , Ácido Pirrolidona Carboxílico , Enfermedades Cardiovasculares/epidemiología , Aterosclerosis/etiología , Apolipoproteínas B , Xantinas , Acetatos , Formiatos , Prolina
4.
Aging Cell ; 22(9): e13928, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37522798

RESUMEN

Inhibition of glycogen breakdown blocks memory formation in young animals, but it stimulates the maintenance of the long-term potentiation, a cellular mechanism of memory formation, in hippocampal slices of old animals. Here, we report that a 2-week treatment with glycogen phosphorylase inhibitor BAY U6751 alleviated memory deficits and stimulated neuroplasticity in old mice. Using the 2-Novel Object Recognition and Novel Object Location tests, we discovered that the prolonged intraperitoneal administration of BAY U6751 improved memory formation in old mice. This was accompanied by changes in morphology of dendritic spines in hippocampal neurons, and by "rejuvenation" of hippocampal proteome. In contrast, in young animals, inhibition of glycogen degradation impaired memory formation; however, as in old mice, it did not alter significantly the morphology and density of cortical dendritic spines. Our findings provide evidence that prolonged inhibition of glycogen phosphorolysis improves memory formation of old animals. This could lead to the development of new strategies for treatment of age-related memory deficits.


Asunto(s)
Glucógeno Fosforilasa , Hipocampo , Ratones , Animales , Hipocampo/metabolismo , Glucógeno Fosforilasa/metabolismo , Trastornos de la Memoria/metabolismo , Cognición , Glucógeno/metabolismo , Espinas Dendríticas/metabolismo
5.
Nanoscale Adv ; 5(10): 2674-2723, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37205285

RESUMEN

Nowadays, nanomaterials (NMs) are widely present in daily life due to their significant benefits, as demonstrated by their application in many fields such as biomedicine, engineering, food, cosmetics, sensing, and energy. However, the increasing production of NMs multiplies the chances of their release into the surrounding environment, making human exposure to NMs inevitable. Currently, nanotoxicology is a crucial field, which focuses on studying the toxicity of NMs. The toxicity or effects of nanoparticles (NPs) on the environment and humans can be preliminary assessed in vitro using cell models. However, the conventional cytotoxicity assays, such as the MTT assay, have some drawbacks including the possibility of interference with the studied NPs. Therefore, it is necessary to employ more advanced techniques that provide high throughput analysis and avoid interferences. In this case, metabolomics is one of the most powerful bioanalytical strategies to assess the toxicity of different materials. By measuring the metabolic change upon the introduction of a stimulus, this technique can reveal the molecular information of the toxicity induced by NPs. This provides the opportunity to design novel and efficient nanodrugs and minimizes the risks of NPs used in industry and other fields. Initially, this review summarizes the ways that NPs and cells interact and the NP parameters that play a role in this interaction, and then the assessment of these interactions using conventional assays and the challenges encountered are discussed. Subsequently, in the main part, we introduce the recent studies employing metabolomics for the assessment of these interactions in vitro.

6.
J Pharm Biomed Anal ; 222: 115090, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36252552

RESUMEN

Endocannabinoids are endogenous lipids with the main function recognized to act as neuromodulators through their cannabinoid receptors. Dysregulation of the endocannabinoid system is implicated in various pathologies, such as inflammatory and neurodegenerative diseases. In this study we describe a sensitive UHPLC-MS/MS method for the analysis of trace levels of 7 endocannabinoids in cerebrospinal fluid samples. The analytes covered comprised 1- and 2-arachidonoylglycerol 1- and 2-AG (which were analysed as sum due to their interconversion), 2-arachidonylglycerol ether 2-AGE, anandamide AEA, N-linoleoyl ethanolamide LEA, N-palmitoyl ethanolamide PEA and N-oleoyl ethanolamide OEA. Analytes were extracted from the biofluid by a simple monophasic procedure involving protein precipitation with acetonitrile (MeCN). The analytical method is based on chromatographic separation of the analytes with solid-core (core-shell, superficially porous) particle column Cortecs C18+ . Gradient elution with changing proportion of water and acetonitrile and constant concentration of formic acid provided reasonable separation of analytes, close elution of analytes and their internal standards and minimized matrix effects in biological samples. For specific detection of the endocannabinoids a triple-quadrupole tandem mass spectrometer with electrospray ionisation (ESI) and selected reaction monitoring (SRM) mode was used, and it provided good assay selectivity. The developed method required a minute volume of the biological samples (50 µL) and achieved excellent sensitivity (the lower limit of detection was between 4.15 and 30.18 pM of the biological sample). Linear calibration was achieved in the range from 25 to 10,545 pM for AEA, 90-3802 pM for 1-AG, 90-724 pM for 2-AG, 12-5226 pM for LEA, 33-13,942 for OEA, 34-23,850 pM for 2-AGE, 72-30,190 for PEA and 10-4218 for AEA-d4 in CSF. The method was validated and revealed relative errors in the range of - 14.7 to + 12.3% at LLOQ and - 14.1 to + 14.2% for the remaining validation range. Precisions were in the acceptable range (< 20% RSD at LLOQ, and <15% for the remaining levels) as well. It was finally used to quantify endocannabinoids in human cerebrospinal fluid obtained from 118 donors. Accurate quantification of endogenous compounds in biological samples was achieved by using two different principal approaches (surrogate matrix for AEA, 2-AG, OEA, 2-AGE, LEA and PEA, and surrogate calibrant for AEA only) and they were evaluated by use of the Passing-Bablok regression. Concentrations (median) of CSF samples of patients suffering from CNS infection and controls were found to be around 160 pM for 1- and 2-AG, 86 pM for AEA, 62 for 2-AGE, 58 for LEA, 93 pM for PEA, and 83 pM for OEA.


Asunto(s)
Endocannabinoides , Espectrometría de Masas en Tándem , Humanos , Anciano , Persona de Mediana Edad , Endocannabinoides/metabolismo , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Acetonitrilos
7.
Nucleic Acids Res ; 50(21): 12558-12577, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36464236

RESUMEN

The PglZ family of proteins belongs to the alkaline phosphatase superfamily, which consists of metallohydrolases with limited sequence identity but similar metal-coordination architectures in otherwise divergent active sites. Proteins with a well-defined PglZ domain are ubiquitous among prokaryotes as essential components of BREX phage defence systems and two-component systems (TCSs). Whereas other members of the alkaline phosphatase superfamily are well characterized, the activity, structure and biological function of PglZ family proteins remain unclear. We therefore investigated the structure and function of PorX, an orphan response regulator of the Porphyromonas gingivalis TCS containing a putative PglZ effector domain. The crystal structure of PorX revealed a canonical receiver domain, a helical bundle, and an unprecedented PglZ domain, similar to the general organization of the phylogenetically related BREX-PglZ proteins. The PglZ domain of PorX features an active site cleft suitable for large substrates. An extensive search for substrates revealed that PorX is a phosphodiesterase that acts on cyclic and linear oligonucleotides, including signalling molecules such as cyclic oligoadenylates. These results, combined with mutagenesis, biophysical and enzymatic analysis, suggest that PorX coordinates oligonucleotide signalling pathways and indirectly regulates gene expression to control the secretion of virulence factors.


Asunto(s)
Proteínas Bacterianas , Factores de Virulencia , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Oligonucleótidos , Fosfatasa Alcalina , Expresión Génica
8.
Nutrients ; 14(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36558512

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is associated with dysfunction of the intestinal microbiota and its metabolites. We aimed to assess whether replacing bread with high-fiber buns beneficially changes the metabolome in NAFLD patients. This study involved 27 adult patients with NAFLD validated by FibroScan® (CAP ≥ 234 dB/m). Patients were asked to replace their existing bread for two meals with high-fiber buns. In this way, the patients ate two rolls every day for 2 months. The following parameters were analysed (at the beginning and after 2 months): the anthropometric data (BIA), eating habits (24 h food recalls), gut barrier markers (lipopolysaccharide S and liposaccharide binding protein (LPS, LBP)), serum short-chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) by GC/MS chromatography, as well as serum metabolites (by 1H NMR spectroscopy). After 2 months of high-fiber roll consumption, the reduction of liver steatosis was observed (change Fibroscan CAP values from 309-277 dB/m). In serum propionate, acetate, isovaleric, and 2-methylbutyric decrease was observed. Proline, choline and one unknown molecule had higher relative concentration in serum at endpoint. A fiber-targeted dietary approach may be helpful in the treatment of patients with NAFLD, by changing the serum microbiota metabolome.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Adulto , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proyectos Piloto , Estado Nutricional , Dieta , Metaboloma
9.
J Sep Sci ; 45(20): 3791-3799, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35964279

RESUMEN

5-Isopropyl-4-(2-chlorophenyl)-1-ethyl-1,4-dihydro-6-methyl-2,3,5-pyridinetricarboxylic acid ester disodium salt hydrate, is a noncompetitive inhibitor of glycogen phosphorylase - a critical enzyme in the process of glycogenolysis. This chemical compound is most widely used in studies focused on the inhibition of liver and muscle glycogenolysis. However, there are also reports linking phosphorylase inhibitor action with cognitive function and glycogen metabolism in the brain. The aim of this study was to develop and validate the liquid chromatography-mass spectrometry method for quantitative analysis of present chemical compound in mouse tissues including different brain regions. Obtained linearity was in the range of 10-550 ng/mL with a correlation coefficient of 0.9996. In tissue matrix samples the limit of detection was 7.76 ng/mL, while the limit of quantification was 23.29 ng/mL. The coefficient of variation values did not exceed ±15% for either within a run or between run precision quality control samples. The extraction recovery was between 89.44% and 98.70% for various validation analyte concentrations. The present method was successful in the quantitative determination of the presented analyte in mouse tissues and provided evidence that the compound is not only present in the liver, heart, and skeletal muscle but also in different regions of brain tissue such as the hippocampus, cerebellum, and cortex.


Asunto(s)
Glucogenólisis , Animales , Ratones , Ésteres , Cromatografía Liquida , Espectrometría de Masas , Fosforilasas , Músculo Esquelético , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados
10.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36012418

RESUMEN

Increased male age is associated with a significant reduction in semen quality. Little is known about the sperm proteome changes resulting from the aging process. This study aimed to investigate the relationship between the functional quality and proteome of epididymal spermatozoa of dogs that were differing in age. The study was conducted on 30 male dogs that were divided into three age groups. G1-12 to 41 months old, G2-42 to 77 months old, and G3-78 to 132 months old. The sperm samples were assessed using a computer-assisted semen analysis (CASA). The epididymal sperm proteins were analyzed using gel electrophoresis (SDS-PAGE), nano-liquid chromatography coupled to quadrupole time of flight mass spectrometry (NanoUPLC-Q-TOF/MS) and bioinformatic tools. The sperm quality parameters were significantly lower in older dogs. NanoUPLC-Q-TOF/MS identification resulted in 865 proteins that were found in the G1, 472 in G2, and 435 in G3. There were seven proteins that were present in all three age groups, and four of them (ACTB, CE10, NPC2, CRISP2) showed significant changes among the studied groups. Age-dependent variations were detected in the sperm proteome composition and were related to important metabolite pathways, which might suggest that several proteins are implicated in sperm maturation and could be potential aging biomarkers.


Asunto(s)
Análisis de Semen , Lobos , Animales , Perros , Masculino , Proteoma/metabolismo , Proteómica , Semen/metabolismo , Análisis de Semen/veterinaria , Motilidad Espermática , Espermatozoides/metabolismo
11.
J Phys Chem B ; 126(32): 6063-6073, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35944057

RESUMEN

The design of two-photon absorbing azobenzene (AB) derivatives has received much attention; however, the two-photon absorption (2PA) properties of bis-conjugated azobenzene systems are relatively less explored. Here, we present the synthesis of six azobenzene derivatives and three bis-azobenzenes substituted (or not) at para position(s) with one or two amino group(s). Their linear and nonlinear absorption properties are studied experimentally and theoretically. The switching behavior and thermal stability of the Z-isomer are studied for unsubstituted mono- (1a, 2a) and bis-azobenzene (3a) compounds, showing that when the length of the π system increases, the half-life of the Z-isomer decreases. Moreover, along with the increase of π-conjugation, the photochromic characteristics are impaired and the photostationary state (PSS) related to E-Z photoisomerization is composed of 89% of the Z-isomer for 2a and 26% of the Z-isomer for 3a. Importantly, the 2PA cross-section increases almost five-fold on extending the π-conjugation (2a vs 3a) and by about one order of magnitude when comparing two systems: the unsubstituted π-electron one (2a, 3a) with D-π-D (2c, 3c). This work clarifies the contribution of π-conjugation and substituent effects to the linear and nonlinear optical properties of mono- and bis-azobenzene compounds based on the experimental and theoretical approaches.


Asunto(s)
Compuestos Azo , Electrones , Naftalenos , Fotones
12.
Sci Rep ; 12(1): 1913, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115588

RESUMEN

The use of antimicrobial photodynamic inactivation as a non-antibiotic alternative method to inactivate Acinetobacter baumannii was described in response to the ever-growing problem of antibiotic resistance. It was found that irradiation of the bacterial suspension for 10 min reduced the number of viable cells by approximately 99% and this energy fluence was considered to be sub-lethal phototherapy. The lethal dose of laser light (cell mortality about 99.9%) was 9.54 J cm-2, which corresponds to 30 min of irradiation. After a 15-fold phototherapy cycle, the tolerance to aPDT decreased, resulting in a decrease in the number of viable cells by 2.15 and 3.23 log10 CFU/ml units with the use of sub-lethal and lethal light doses, respectively. Multiple photosensitizations decreased the biofilm formation efficiency by 25 ± 1% and 35 ± 1%, respectively. No changes in antibiotic resistance were observed, whereas the cells were more sensitive to hydrogen peroxide. Metabolomic changes after multiple photosensitization were studied and 1H NMR measurements were used in statistical and multivariate data analysis. Many significant changes in the levels of the metabolites were detected demonstrating the response of A. baumannii to oxidative stress.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Acinetobacter baumannii/metabolismo , Adenosina Trifosfato/metabolismo , Farmacorresistencia Bacteriana , Metaboloma , Metabolómica , Viabilidad Microbiana , Espectroscopía de Protones por Resonancia Magnética , Especies Reactivas de Oxígeno/metabolismo
13.
Polymers (Basel) ; 13(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34883735

RESUMEN

Seed coating containing fertilizer nutrients and plant growth biostimulants is an innovative technique for precision agriculture. Nutrient delivery can also be conducted through multilayer seed coating. For this purpose, sodium alginate with NPK, which was selected in a preliminary selection study, crosslinked with divalent ions (Cu(II), Mn(II), Zn(II)) as a source of fertilizer micronutrients, was used to produce seed coating. The seeds were additionally coated with a solution containing amino acids derived from high-protein material. Amino acids can be obtained by alkaline hydrolysis of mealworm larvae (Gly 71.2 ± 0.6 mM, Glu 55.8 ± 1.3 mM, Pro 48.8 ± 1.5 mM, Ser 31.4 ± 1.5 mM). The formulations were applied in different doses per 100 g of seeds: 35 mL, 70 mL, 105 mL, and 140 mL. SEM-EDX surface analysis showed that 70 mL of formulation/100 g of seeds formed a continuity of coatings but did not result in a uniform distribution of components on the surface. Extraction tests proved simultaneous low leaching of nutrients into water (max. 10%), showing a slow release pattern. There occurred high bioavailability of fertilizer nutrients (even up to 100%). Pot tests on cucumbers (Cornichon de Paris) confirmed the new method's effectiveness, yielding a 50% higher fresh sprout weight and four times greater root length than uncoated seeds. Seed coating with hydrogel has a high potential for commercial application, stimulating the early growth of plants and thus leading to higher crop yields.

14.
Animals (Basel) ; 11(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34944135

RESUMEN

Animal nutrition plays an important role in the therapy of many diseases, including heart failure. The aim was to assess whether 6 months of feeding an AEP + ADH enriched diet (from fish meat) in dogs suffering from heart failure due to mitral degeneration impacts the dogs' metabolic profile and clinical status. Twenty small breed dogs were included: 50% were in stage B2 of MMVD and 50%, in stage C according to ACVIM. Dogs were randomly divided into two groups. One group receiving a standard diet, the second one a diet enriched with EPA + DHA (from fish meat). All dogs continued to receive appropriate therapy throughout the study. Control examinations were performed at the start of the study, after 3 and 6 months of appropriate feeding. Examinations included ECG, ECHO, blood hemathology and biochemistry, morphometric measurements, body fat index and subcutaneous fat tissue thickness. Serum samples were analyzed with a high-performance liquid chromatography system. Data were analyzed using the Progenesis QI (PQI, Non-linear Dynamics). The results showed no differences in clinical, cardiological, haematological and biochemical parameters between the two study groups. An effect on the metabolomic profile following a continued diet enriched in DHA + EPA (from fish meat) was more pronounced with time. After 6 months of feeding the diete enriched with DHA + EPA (from fish meat), there was a favorable reduction in glycerophosphocholine and xanthine levels, but an adverse increase in lactate and furvan and a decrease in alanine was not stopped.

15.
Metabolites ; 11(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34822425

RESUMEN

Renal cell carcinoma (RCC) is the most common form of kidney malignancy. RCC is more common among men with a 2/1 male/female incidence ratio worldwide. Given the underlying epidemiological differences in the RCC incidence between males and females, we explored the gender specific 1H NMR serum metabolic profiles of RCC patients and their matched controls. A number of differential metabolites were shared by male and female RCC patients. These RCC specific changes included lower lactate, threonine, histidine, and choline levels together with increased levels of pyruvate, N-acetylated glycoproteins, beta-hydroxybutyrate, acetoacetate, and lysine. Additionally, serum lactate/pyruvate ratio was a strong predictor of RCC status regardless of gender. Although only moderate changes in metabolic profiles were observed between control males and females there were substantial gender related differences among RCC patients. Gender specific metabolic features associated with RCC status were identified suggesting that different metabolic panels could be leveraged for a more precise diagnostic.

16.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34639158

RESUMEN

Pseudomonas aeruginosa is a common human pathogen belonging to the ESKAPE group. The multidrug resistance of bacteria is a considerable problem in treating patients and may lead to increased morbidity and mortality rate. The natural resistance in these organisms is caused by the production of specific enzymes and biofilm formation, while acquired resistance is multifactorial. Precise recognition of potential antibiotic resistance on different molecular levels is essential. Metabolomics tools may aid in the observation of the flux of low molecular weight compounds in biochemical pathways yielding additional information about drug-resistant bacteria. In this study, the metabolisms of two P. aeruginosa strains were compared-antibiotic susceptible vs. resistant. Analysis was performed on both intra- and extracellular metabolites. The 1H NMR method was used together with multivariate and univariate data analysis, additionally analysis of the metabolic pathways with the FELLA package was performed. The results revealed the differences in P. aeruginosa metabolism of drug-resistant and drug-susceptible strains and provided direct molecular information about P. aeruginosa response for different types of antibiotics. The most significant differences were found in the turnover of amino acids. This study can be a valuable source of information to complement research on drug resistance in P. aeruginosa.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Metaboloma/efectos de los fármacos , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación
17.
Sci Rep ; 11(1): 20859, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675363

RESUMEN

Metabolomic experiments usually contain many different steps, each of which can strongly influence the obtained results. In this work, metabolic analyses of six bacterial strains were performed in light of three different bacterial cell disintegration methods. Three strains were gram-negative (Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae), and three were gram-positive (Corynebacterium glutamicum, Bacillus cereus, and Enterococcus faecalis). For extraction, the methanol-water extraction method (1:1) was chosen. To compare the efficiency of different cell disintegration methods, sonication, sand mill, and tissue lyser were used. For bacterial extract metabolite analysis, 1H NMR together with univariate and multivariate analyses were applied. The obtained results showed that metabolite concentrations are strongly dependent on the cell lysing methodology used and are different for various bacterial strains. The results clearly show that one of the disruption methods gives the highest concentration for most identified compounds (e. g. sand mill for E. faecalis and tissue lyser for B. cereus). This study indicated that the comparison of samples prepared by different procedures can lead to false or imprecise results, leaving an imprint of the disintegration method. Furthermore, the presented results showed that NMR might be a useful bacterial strain identification and differentiation method. In addition to disintegration method comparison, the metabolic profiles of each elaborated strain were analyzed, and each exhibited its metabolic profile. Some metabolites were identified by the 1H NMR method in only one strain. The results of multivariate data analyses (PCA) show that regardless of the disintegration method used, the strain group can be identified. Presented results can be significant for all types of microbial studies containing the metabolomic targeted and non-targeted analysis.


Asunto(s)
Bacterias/metabolismo , Metaboloma , Bacterias/química , Infecciones Bacterianas/microbiología , Rayos Láser , Espectroscopía de Resonancia Magnética , Metabolómica/métodos , Sonicación
18.
Pharmaceutics ; 13(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201532

RESUMEN

Endometriosis is a gynecological disease defined by the presence of endometrial tissue outside the uterus. To date, the effective treatment of this disease is still based on invasive surgery or laparoscopy. Chelidonium majus L. (Papaveraceae) belongs to medicinal, latex-bearing plants. Extracts from the plant are a rich source of pharmacologically active agents. Protoberberine compounds derived from C. majus possess anticancer and antiproliferative activities. In the present study of a rat model of endometriosis, we investigated the influence of the plant protoberberine-rich fraction (BBR) obtained from the medicinal plant C. majus on the development of endometriosis. To understand of BBR therapeutic potential for endometriosis, metabolomics has been applied to study. BBR was prepared from an ethanolic extract of dry plants C. majus. Rats (n = 16) with confirmed endometriosis were treated with BBR administered orally (1 g/kg) for 14 days. Blood serum samples were collected from all of the animals and metabolites were studied using the NMR method. The metabolomic pattern was compared before and after the protoberberine treatment. The performed analysis showed significant changes in the concentrations of metabolites that are involved in energy homeostasis, including glucose, glutamine, and lactate. Histopathological studies showed no recurrence of endometriosis loci after treatment with BBR. The results of the study found that BBR treatment prevents the recurrence of endometriosis in rats. Moreover, metabolomics profiling can be applied to better understand the mechanisms of action of these protoberberine secondary plant metabolites. Our findings provide new insights into the pharmaceutical activity of natural protoberberine plant compounds.

19.
Sci Rep ; 11(1): 15519, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330941

RESUMEN

There is a clear difference between severe brain damage and brain death. However, in clinical practice, the differentiation of these states can be challenging. Currently, there are no laboratory tools that facilitate brain death diagnosis. The aim of our study was to evaluate the utility of serum metabolomic analysis in differentiating coma patients (CP) from individuals with brain death (BD). Serum samples were collected from 23 adult individuals with established diagnosis of brain death and 24 patients in coma with Glasgow Coma Scale 3 or 4, with no other clinical symptoms of brain death for at least 7 days after sample collection. Serum metabolomic profiles were investigated using proton nuclear magnetic resonance (NMR) spectroscopy. The results obtained were examined by univariate and multivariate data analysis (PCA, PLS-DA, and OPLS-DA). Metabolic profiling allowed us to quantify 43 resonance signals, of which 34 were identified. Multivariate statistical modeling revealed a highly significant separation between coma patients and brain-dead individuals, as well as strong predictive potential. The findings not only highlight the potential of the metabolomic approach for distinguishing patients in coma from those in the state of brain death but also may provide an understanding of the pathogenic mechanisms underlying these conditions.


Asunto(s)
Muerte Encefálica/sangre , Coma/sangre , Adulto , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Metaboloma/fisiología , Metabolómica/métodos , Persona de Mediana Edad , Análisis Multivariante , Adulto Joven
20.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299006

RESUMEN

Rheumatoid arthritis (RA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA) are comprehensive immunological disorders. The treatment of these disorders is limited to ameliorating the symptoms and improving the quality of life of patients. In this study, serum samples from RA, AS, and PsA patients were analyzed with metabolomic tools employing the 1H NMR method in combination with univariate and multivariate analyses. The results obtained in this study showed that the changes in metabolites were the highest for AS > RA > PsA. The study demonstrated that the time until remission or until low disease activity is achieved is shortest (approximately three months) for AS, longer for RA and longest for PsA. The statistically common metabolite that was found to be negatively correlated with the healing processes of these disorders is ethanol, which may indicate the involvement of the gut microflora and/or the breakdown of malondialdehyde as a cell membrane lipid peroxide product.


Asunto(s)
Artritis Psoriásica/sangre , Artritis Reumatoide/sangre , Etanol/sangre , Espondilitis Anquilosante/sangre , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Adulto , Artritis Psoriásica/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Estudios de Cohortes , Biología Computacional , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Metaboloma , Análisis de Componente Principal , Espondilitis Anquilosante/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...