Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(26): 7088-93, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27298347

RESUMEN

Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/genética , Grafito/química , Polimorfismo de Nucleótido Simple , Técnicas Biosensibles/instrumentación , Genotipo , Humanos
2.
Nanoscale ; 8(23): 11840-50, 2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27228391

RESUMEN

Composite colloidal structures with multi-functional properties have wide applications in targeted delivery of therapeutics and imaging contrast molecules and high-throughput molecular bio-sensing. We have constructed a multifunctional composite magnetic nanobowl using the bottom-up approach on an asymmetric silica/polystyrene Janus template consisting of a silica shell around a partially exposed polystyrene core. The nanobowl consists of a silica bowl and a gold exterior shell with iron oxide magnetic nanoparticles sandwiched between the silica and gold shells. The nanobowls were characterized by electron microscopy, atomic force microscopy, magnetometry, vis-NIR and FTIR spectroscopy. Magnetically vectored transport of these nanobowls was ascertained by time-lapsed imaging of their flow in fluid through a porous hydrogel under a defined magnetic field. These magnetically-responsive nanobowls show distinct surface enhanced Raman spectroscopy (SERS) imaging capability. The PEGylated magnetically-responsive nanobowls show size-dependent cellular uptake in vitro.


Asunto(s)
Oro/química , Nanopartículas/química , Dióxido de Silicio/química , Espectrometría Raman , Línea Celular Tumoral , Humanos , Poliestirenos
3.
ACS Appl Mater Interfaces ; 8(23): 14740-6, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27144808

RESUMEN

Nanocarriers with the ability to spatially organize chemically distinct multiple bioactive moieties will have wide combinatory therapeutic and diagnostic (theranostic) applications. We have designed dual-functionalized, 100 nm to 1 µm sized scalable nanocarriers comprising a silica golf ball with amine or quaternary ammonium functional groups located in its pits and hydroxyl groups located on its nonpit surface. These functionalized golf balls selectively captured 10-40 nm charged gold nanoparticles (GNPs) into their pits. The selective capture of GNPs in the golf ball pits is visualized by scanning electron microscopy. ζ potential measurements and analytical modeling indicate that the GNP capture involves its proximity to and the electric charge on the surface of the golf balls. Potential applications of these dual-functionalized carriers include distinct attachment of multiple agents for multifunctional theranostic applications, selective scavenging, and clearance of harmful substances.


Asunto(s)
Nanomedicina Teranóstica/métodos , Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Rastreo , Dióxido de Silicio
4.
Langmuir ; 31(33): 9148-54, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26244597

RESUMEN

Colloidal particles with asymmetric surface chemistry (Janus particles) have unique bifunctional properties. The size of these particles is an important determinant for their applications in diverse fields from drug delivery to chemical catalysis. The size of Janus particles, with a core surface coated with carboxylate and a partially encapsulating silica shell, depends upon several factors, including the core size and the concentration of carboxylate coating. The role of the carboxylate coating on the Janus particle size is well-understood; however, the role of the core size is not well defined. The role of the carboxylated polystyrene (cPS) core size on the cPS-silica Janus particle morphology (its size and shape) was examined by testing two different silica sizes and five different cPS core sizes. Results from electron microscopy (EM) and dynamic light scattering (DLS) analysis indicate that the composite cPS-silica particle acquires two distinct shapes: (i) when the size of the cPS core is much smaller than the non-cPS silica (b-SiO2) sphere, partially encapsulated Janus particles are formed, and (ii) when the cPS core is larger than or equal to the b-SiO2 sphere, a raspberry-like structure rather than a Janus particle is formed. The cPS-silica Janus particles of ∼100-500 nm size were obtained when the size of the cPS core was much smaller than the non-cPS silica (b-SiO2) sphere. These scalable nanoscale Janus particles will have wide application in a multifunctional delivery platform and catalysis.


Asunto(s)
Sistemas de Liberación de Medicamentos , Poliestirenos/química , Dióxido de Silicio/química , Coloides , Tamaño de la Partícula
5.
Nanoscale ; 7(2): 771-775, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25431230

RESUMEN

Colloidal particles with two or more different surface properties (Janus particles) are of interest in catalysis, biological imaging, and drug delivery. Eccentric nanoparticles are a type of Janus particle consisting of a shell that envelops the majority of a core particle, leaving a portion of the core surface exposed. Previous work to synthesize eccentric nanoparticles from silica and polystyrene have only used microemulsion techniques. In contrast we report the sol-gel synthesis of eccentric Janus nanoparticles composed of a silica shell around a carboxylate-modified polystyrene core (Janus templates). In addition, we have synthesized nano-bowl-like structures after the removal of the polystyrene core by organic solvent. These Janus templates and nanobowls can be used as a versatile platform for site-specific functionalization or controlled theranostic delivery.


Asunto(s)
Nanoestructuras/química , Ácidos Carboxílicos/química , Nanopartículas/química , Tamaño de la Partícula , Poliestirenos/química , Dióxido de Silicio/química , Solventes/química , Propiedades de Superficie
6.
Langmuir ; 30(46): 14073-8, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25347360

RESUMEN

Current work in tuning DNA kinetics has focused on changing toehold lengths and DNA concentrations. However, kinetics can also be improved by enhancing the completion probability of the strand displacement process. Here, we execute this strategy by creating a toehold DNA motor device with the inclusion of a synthetic nucleotide, inosine, at selected sites. Furthermore, we found that the energetic bias can be tuned such that the device can stay in a stable partially displaced state. This work demonstrates the utility of energetic biases to change DNA strand displacement kinetics and introduces a complementary strategy to the existing designs.


Asunto(s)
ADN/química , Cinética
7.
ACS Appl Mater Interfaces ; 6(13): 9937-41, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24937196

RESUMEN

Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure.


Asunto(s)
Oro/química , Nanoestructuras/química , Microscopía Electrónica de Rastreo
8.
Nanoscale ; 6(3): 1462-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24317092

RESUMEN

A DNA four-way junction device capable of junction expansion and contraction cycles using an inosine-based partial strand displacement scheme is reported. These nanoscale positioning capabilities are used to provide on-demand activation and deactivation of a pair of split E6 DNAzymes on the device. The device also demonstrates a combined catalytic rate significantly higher than the original E6 DNAzyme under similar operational conditions. This approach can provide structural organization and spatially control other multicomponent molecular complexes.


Asunto(s)
ADN Catalítico/química , Catálisis , ADN/química , Electroforesis en Gel de Agar , Inosina , Cinética , Microscopía Electrónica de Transmisión , Nanotecnología/métodos , Conformación de Ácido Nucleico , Espectrometría de Fluorescencia , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...