Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172237, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582105

RESUMEN

Dichloroacetonitrile (DCAN), an emerged nitrogenous disinfection by-product (N-DBP) in drinking water, has garnered attention owing to its strong cytotoxicity, genotoxicity, and carcinogenicity. However, there are limited studies on its potential hepatotoxicity mechanisms. Understanding hepatotoxicity is essential in order to identify and assess the potential risks posed by environmental pollutants on liver health and to safeguard public health. Here, we investigated the viability, reactive oxygen species (ROS) levels, and cell cycle profile of DCAN-exposed HepG2 cells and analyzed the mechanism of DCAN-induced hepatotoxicity using both transcriptomic and metabolomic techniques. The study revealed that there was a decrease in cell viability, increase in ROS production, and increase in the number of cells in the G2/M phase with an increase in the concentration of DCAN. Omics analyses showed that DCAN exposure increased cellular ROS levels, leading to oxidative damage in hepatocytes, which further induced DNA damage, cell cycle arrest, and cell growth impairment. Thus, DCAN has significant toxic effects on hepatocytes. Integrated analysis of transcriptomics and metabolomics offers new insights into the mechanisms of DCAN-induced hepatoxicity.


Asunto(s)
Acetonitrilos , Metabolómica , Transcriptoma , Humanos , Transcriptoma/efectos de los fármacos , Células Hep G2 , Acetonitrilos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo
2.
Toxics ; 12(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38535950

RESUMEN

Ampicillin (AMP) and cefazolin (CZO) are commonly used ß-lactam antibiotics which are extensively globally produced. Additionally, AMP and CZO are known to have relatively high ecotoxicity. Notably, the mix of AMP and CZO creates a synergistic effect that is more harmful to the environment, and how exposure to AMP-CZO can induce synergism in algae remains virtually unknown. To yield comprehensive mechanistic insights into chemical toxicity, including dose-response relationships and variations in species sensitivity, the integration of multiple endpoints with de novo transcriptomics analyses were used in this study. We employed Selenastrum capricornutum to investigate its toxicological responses to AMP and CZO at various biological levels, with the aim of elucidating the underlying mechanisms. Our assessment of multiple endpoints revealed a significant growth inhibition in response to AMP at the relevant concentrations. This inhibition was associated with increased levels of reactive oxygen species (ROS) and perturbations in nitrogen metabolism, carbohydrate metabolism, and energy metabolism. Growth inhibition in the presence of CZO and the AMP-CZO combination was linked to reduced viability levels, elevated ROS production, decreased total soluble protein content, inhibited photosynthesis, and disruptions in the key signaling pathways related to starch and sucrose metabolism, ribosome function, amino acid biosynthesis, and the production of secondary metabolites. It was concluded from the physiological level that the synergistic effect of Chlorophyll a (Chla) and Superoxide dismutase (SOD) activity strengthened the growth inhibition of S. capricornutum in the AMP-CZO synergistic group. According to the results of transcriptomic analysis, the simultaneous down-regulation of LHCA4, LHCA1, LHCA5, and sodA destroyed the functions of the photosynthetic system and the antioxidant system, respectively. Such information is invaluable for environmental risk assessments. The results provided critical knowledge for a better understanding of the potential ecological impacts of these antibiotics on non-target organisms.

3.
Sci Total Environ ; 926: 171771, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521260

RESUMEN

Assessing the interactions between environmental pollutants and these mixtures is of paramount significance in understanding their negative effects on aquatic ecosystems. However, existing research often lacks comprehensive investigations into the physiological and biochemical mechanisms underlying these interactions. This study aimed to reveal the toxic mechanisms of cyproconazole (CYP), imazalil (IMA), and prochloraz (PRO) and corresponding these mixtures on Auxenochlorella pyrenoidosa by analyzing the interactions at physiological and biochemical levels. Higher concentrations of CYP, IMA, and PRO and these mixtures resulted in a reduction in chlorophyll (Chl) content and increased total protein (TP) suppression, and malondialdehyde (MDA) content exhibited a negative correlation with algal growth. The activity of catalase (CAT) and superoxide dismutase (SOD) decreased with increasing azole fungicides and their mixture concentrations, correlating positively with growth inhibition. Azole fungicides induced dose-dependent apoptosis in A. pyrenoidosa, with higher apoptosis rates indicative of greater pollutant toxicity. The results revealed concentration-dependent toxicity effects, with antagonistic interactions at low concentrations and synergistic effects at high concentrations within the CYP-IMA mixtures. These interactions were closely linked to the interactions observed in Chl-a, carotenoid (Car), CAT, and cellular apoptosis. The antagonistic effects of CYP-PRO mixtures on A. pyrenoidosa growth inhibition can be attributed to the antagonism observed in Chl-a, Chl-b, Car, TP, CAT, SOD, and cellular apoptosis. This study emphasized the importance of gaining a comprehensive understanding of the physiological and biochemical interactions within algal cells, which may help understand the potential mechanism of toxic interaction.


Asunto(s)
Chlorophyta , Fungicidas Industriales , Contaminantes Químicos del Agua , Fungicidas Industriales/toxicidad , Azoles/toxicidad , Ecosistema , Chlorophyta/metabolismo , Clorofila A , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/toxicidad
4.
Sci Total Environ ; 918: 170817, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38340818

RESUMEN

Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known to pose health risks to humans upon exposure. Recognizing the toxic nature of DEHP, our study aimed to elucidate the response mechanisms in Brassica chinensis L. (Shanghai Qing) when subjected to varying concentrations of DEHP (2 mg kg-1, 20 mg kg-1, and 50 mg kg-1), particularly under tissue stress. The findings underscored the substantial impact of DEHP treatment on the growth of Brassica chinensis L., with increased DEHP concentration leading to a notable decrease in chlorophyll levels and alterations in the content of antioxidant enzyme activities, particularly superoxide dismutase (SOD) and peroxidase (POD). Moreover, elevated DEHP concentrations correlated with increased malondialdehyde (MDA) levels. Our analysis detected a total of 507 metabolites in Brassica chinensis L., with 331 in shoots and 176 in roots, following DEHP exposure. There was a significant difference in the number of metabolites in shoots and roots, with 79 and 64 identified, respectively (VIP > 1, p < 0.05). Metabolic pathway enrichment in Brassica chinensis L. shoots revealed significant perturbations in valine, leucine, and isoleucine biosynthesis and degradation, aminoacyl-tRNA, and glucosinolate biosynthesis. In the roots of Brassica chinensis L., varying DEHP levels exerted a substantial impact on the biosynthesis of zeatin, ubiquinone terpenoids, propane, piperidine, and pyridine alkaloids, as well as glutathione metabolic pathways. Notably, DEHP's influence was more pronounced in the roots than in the shoots, with higher DEHP concentrations affecting a greater number of metabolic pathways. This experimental study provides valuable insights into the molecular mechanisms underlying DEHP-induced stress in Brassica chinensis L., with potential implications for human health and food safety.


Asunto(s)
Brassica , Dietilhexil Ftalato , Ácidos Ftálicos , Humanos , Dietilhexil Ftalato/metabolismo , China , Ácidos Ftálicos/metabolismo , Antioxidantes/metabolismo , Brassica/metabolismo
5.
Ecotoxicol Environ Saf ; 256: 114910, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37062261

RESUMEN

A large number of antibiotics have been used in the medical industry, agriculture, and animal husbandry industry in recent years. It may cause pollution to the aquatic environment and ultimately threaten to human health due to their prolonged exposure to the environment. We aim to study the toxicity mechanism of enrofloxacin (ENR), chlortetracycline hydrochloride (CTC), trimethoprim (TMP), chloramphenicol (CMP), and erythromycin (ETM) to luciferase of Vibrio Qinghaiensis sp.-Q67 (Q67) by using toxicity testing combined with molecular docking, molecular dynamics, and binding free energy analysis. The curve categories for ENR were different from the other four antibiotics, with ENR being J-type and the rest being S-type, and the toxicity of these five antibiotics (pEC50) followed the order of ENR (7.281) > ETM (6.814) > CMP (6.672) > CTC (6.400) > TMP (6.123), the order of toxicity value is consistent with the the magnitude of the binding free energy (ENR (-47.759 kcal/mol), ETM (-46.821 kcal/mol), CMP (-42.905 kcal/mol), CTC (-40.946 kcal/mol), TMP (-28.251 kcal/mol)). The van der Waals force provided the most important contribution to the binding free energy of the five antibiotics in the binding system with Q67 luciferase. Therefore, the dominant factor for the binding of antibiotics to luciferase was shape compensation. The face-to-face π-π stacking interaction between the diazohexane structure outside the active pocket region and the indoles structure of Phe194 and Phe250 in the molecular structure was the main reason for the highest toxicity value of antibiotic ENR. The hormesis effect of ENR has a competitive binding relationship with the α and ß subunits of luciferase. Homology modeling, molecular docking, molecular dynamics simulations and binding free energy calculations were used to derive the toxicity magnitude of different antibiotics against Q67, and insights at the molecular level. The conclusion of toxicological experiments verified the correctness of the simulation results. This study contributes to the understanding of toxicity mechanisms of five antibiotics and facilitates risk assessment of antibiotic contaminants in the aquatic environment.


Asunto(s)
Antibacterianos , Vibrio , Humanos , Antibacterianos/farmacología , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Enrofloxacina/metabolismo
6.
Ecotoxicol Environ Saf ; 255: 114784, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948009

RESUMEN

Four quinolone antibiotics (ciprofloxacin (CIP), enrofloxacin (ENR), sparfloxacin (SPA), gatifloxacin (GAT)) and their binary mixtures at environmentally relevant concentrations exhibited time-dependent hormesis on Vibrio qinghaiensis sp.-Q67 (Q67). The study aims to investigate the time-dependent toxicity of low-dose pollutants and the occurrence of hormesis. These indicators, total protein (TP), reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and luminescence-related chemicals flavin mononucleotide (FMN), nicotinamide adenine dinucleotide (NADH), were measured to explore the mechanism of hormesis. The results showed a trend of increases in all indicators after 12 h of exposure, reaching maximal effects at 60 h and then decreasing as time progressed. At 36 h, 60 h and 84 h, the results showed a gradual increase followed by a decreasing trend in TP, FMN and NADH as the concentration in the group increased, whereas ROS, CAT, SOD and MDA showed the opposite trend. Notably, the degree of changes was related to the magnitude of hormesis. At low concentrations, the content of ROS and MDA decreased, the activity of CAT and SOD was lower, but the content of TP, FMN, NADH gradually increased, positively correlated with the promotion of Q67. At high concentrations, ROS and MDA content in Q67 increased, triggering the antioxidant defense mechanism (CAT and SOD activity increased), but TP, FMN, NADH content decreased, negatively correlated with the inhibited Q67. Therefore, our findings demonstrated two common patterns in these seven biochemical indicators on Q67. These findings have important practical implications for the ecological risk assessment of antibiotics in aquatic environment.


Asunto(s)
Quinolonas , Vibrio , Luminiscencia , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Antibacterianos/farmacología , Quinolonas/farmacología
7.
Environ Toxicol ; 38(7): 1509-1519, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36947457

RESUMEN

It is acknowledged that azole fungicides may release into the environment and pose potential toxic risks. The combined toxicity interactions of azole fungicide mixtures, however, are still not fully understood. The combined toxicities and its toxic interactions of 225 binary mixtures and 126 multi-component mixtures on Chlorella pyrenoidosa were performed in this study. The results demonstrated that the negative logarithm 50% effect concentration (pEC50 ) of 10 azole fungicides to Chlorella pyrenoidosa at 96 h ranged from 4.23 (triadimefon) to 7.22 (ketoconazole), while the pEC50 values of the 351 mixtures ranged from 3.91 to 7.44. The high toxicities were found for the mixtures containing epoxiconazole. According to the results of the model deviation ratio (MDR) calculated from the concentration addition (MDRCA ), 243 out of 351 (69.23%) mixtures presented additive effect at the 10% effect, while the 23.08% and 7.69% of mixtures presented synergistic and antagonistic effects, respectively. At the 30% effect, 47.29%, 29.34%, and 23.36% of mixtures presented additive effects, synergism, and antagonism, respectively. At the 50% effect, 44.16%, 34.76%, and 21.08% of mixtures presented additive effects, synergism, and antagonism, respectively. Thus, the toxicity interactions at low concentration (10% effect) were dominated by additive effect (69.23%), whereas 55.84% of mixtures induced synergism and antagonism at high concentration (50% effect). Climbazole and imazalil were the most frequency of components presented in the additive mixtures. Epoxiconazole was the key component induced the synergistic effects, while clotrimazole was the key component in the antagonistic mixtures.


Asunto(s)
Chlorella , Fungicidas Industriales , Fungicidas Industriales/toxicidad , Azoles/toxicidad , Compuestos Epoxi/toxicidad
8.
Artículo en Inglés | MEDLINE | ID: mdl-36078688

RESUMEN

As algae are extremely sensitive to heavy-metal ions and can be critical biological indicators in the heavy-metal toxicity analyses conducted by environmental health researchers, this paper explores the sensitivity to temporal toxicity of three species of green algae: Scenedesmus obliquus, Chlorella pyrenoidosa, and Selenastrum capricornutum. The method of time-dependent microplate toxicity analysis was used to systematically investigate the changes in the toxicities of the three green-algae species induced by different concentrations of cadmium (Cd). The chlorophyll a content, antioxidant enzyme activity, and malondialdehyde (MDA) content in the algae were analyzed to explore the mechanism of Cd toxicity after 96 h of exposure. The results showed that the toxic effects of Cd on the three algae species were time-dependent. By comparing the toxic effect of Cd, indicated by pEC50 (the negative logarithm of EC50), on the algae species at four durations of exposure (24, 48, 72, and 96 h), this study found that the indicator organisms had different sensitivities to Cd. The order of sensitivity was C. pyrenoidosa > S. obliquus > S. capricornutum. Cd exposure had significant effects on the chlorophyll a and MDA content and on the enzyme activity of superoxide dismutase (SOD) and catalase (CAT) in the algae species. The chlorophyll a content in the cells of the algae decreased with increasing Cd concentration. The enzyme activity of CAT and content of MDA increased with increasing Cd concentration, which indicated that Cd had an oxidative stress effect on the three algae species.


Asunto(s)
Cadmio , Chlorella , Antioxidantes/farmacología , Cadmio/toxicidad , Clorofila/análisis , Clorofila A , Superóxido Dismutasa
9.
Sci Total Environ ; 765: 144334, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33385812

RESUMEN

Ionic liquids (ILs) become emerging pollutants and their toxicities earn increasing attentions. Yet, their effects were seldom explored on reproduction which connects generations and also effects across generations. In the present study, reproductive effects of 1-ethyl-3-methylimidazolium bromide ([C2mim]Br), one representative IL, were studied on C. elegans with 11 continuously exposed generations (F1 to F11). At 8.20E-5 g/L, the effects on the initial reproduction showed oscillatory changes between stimulation (in F1, F3, F4, F6 and F10) and inhibition (in F2, F5, F7, F8 and F11). At 8.20E-3 g/L, the effects on the reproduction over generations also showed such oscillation despite of different stimulation or inhibition levels, and even opposite influences in F4 and F11. The effects of [C2mim]Br on the total reproduction also showed the concentration-dependent oscillation between stimulation and inhibition over generations, though they had less alteration frequencies than those on the initial reproduction. Biochemical and molecular indicators were further measured in F1, F4, F7 and F11 to explore potential mechanisms. Results showed that the effects on spermatocyte protein 8 (SPE8) showed positive correlation with those on reproduction while the influences on major sperm protein (MSP) and sperm transmembrane protein 9 (SPE9) showed negative correlation with SPE8. Moreover, the dysregulation on expressions of acs-2 and akt-1 indicated the involvement of glucolipid metabolism. The changes in expressions of set-2, met-2, set-25 and mes-4 demonstrated that the long-term reproductive impacts of [C2mim]Br over generations also involved histone methylation at H3K4, H3K9 and H3K36, which also connected with the glucolipid metabolism.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Proteínas de Caenorhabditis elegans/genética , Composición Familiar , Imidazoles/toxicidad , Reproducción
10.
Environ Toxicol Chem ; 40(5): 1431-1442, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33507536

RESUMEN

The potential toxicity of haloacetic acids (HAAs), common disinfection by products (DBPs), has been widely studied; but their combined effects on freshwater green algae remain poorly understood. The present study was conducted to investigate the toxicological interactions of HAA mixtures in the green alga Raphidocelis subcapitata and predict the DBP mixture toxicities based on concentration addition, independent action, and quantitative structure-activity relationship (QSAR) models. The acute toxicities of 6 HAAs (iodoacetic acid [IAA], bromoacetic acid [BAA], chloroacetic acid [CAA], dichloroacetic acid [DCAA], trichloroacetic acid [TCAA], and tribromoacetic acid [TBAA]) and their 68 binary mixtures to the green algae were analyzed in 96-well microplates. Results reveal that the rank order of the toxicity of individual HAAs is CAA > IAA ≈ BAA > TCAA > DCAA > TBAA. With concentration addition as the reference additive model, the mixture effects are synergetic in 47.1% and antagonistic in 25%, whereas the additive effects are only observed in 27.9% of the experiments. The main components that induce synergism are DCAA, IAA, and BAA; and CAA is the main component that causes antagonism. Prediction by concentration addition and independent action indicates that the 2 models fail to accurately predict 72% mixture toxicity at an effective concentration level of 50%. Modeling the mixtures by QSAR was established by statistically analyzing descriptors for the determination of the relationship between their chemical structures and the negative logarithm of the 50% effective concentration. The additive mixture toxicities are accurately predicted by the QSAR model based on 2 parameters, the octanol-water partition coefficient and the acid dissociation constant (pKa ). The toxicities of synergetic mixtures can be interpreted with the total energy (ET ) and pKa of the mixtures. Dipole moment and ET are the quantum descriptors that influence the antagonistic mixture toxicity. Therefore, in silico modeling may be a useful tool in predicting disinfection by-product mixture toxicities. Environ Toxicol Chem 2021;40:1431-1442. © 2021 SETAC.


Asunto(s)
Chlorophyta , Contaminantes Químicos del Agua , Desinfección , Relación Estructura-Actividad Cuantitativa , Contaminantes Químicos del Agua/toxicidad
11.
Chemosphere ; 262: 127793, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32799142

RESUMEN

Currently, few studies have investigated the joint toxicity mechanism of azole fungicides at different exposure times and mixed at the relevant environmental concentrations. In this study, three common azole fungicides, namely, myclobutanil (MYC), propiconazole (PRO), and tebuconazole (TCZ), were used in studying the toxic mechanisms of a single substance and its ternary mixture exposed to ambient concentrations of Chlorella pyrenoidosa. Superoxide dismutase (SOD), catalase (CAT), chlorophyll a (Chla), and total protein (TP), were used as physiological indexes. Results showed that three azole fungicides and ternary mixture presented obvious time-dependent toxicities at high concentrations. MYC induced a hormetic effect on algal growth, whereas PRO and TCZ inhibit algal growth in the entire range of the tested concentrations. The toxicities of the three azole fungicides at 7 days followed the order PRO > TCZ > MYC. Three azole fungicides and their ternary mixture induced different levels of SOD and CAT activities in algae at high concentrations. The ternary mixture showed additive effects after 4 and 7 days exposure, but no effect was observed at actual environmental concentrations. The toxic mechanisms may be related to the continuous accumulation of reactive oxygen species, which not only affected protein structures and compositions but also damaged thylakoid membranes, hindered the synthesis of proteins and chlorophyll a, and eventually inhibited algal growth. These findings increase the understanding of the ecotoxicity of azole fungicides and use of azole fungicides in agricultural production.


Asunto(s)
Antioxidantes/metabolismo , Azoles/toxicidad , Chlorella/efectos de los fármacos , Fungicidas Industriales/toxicidad , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Catalasa/metabolismo , Chlorella/enzimología , Chlorella/crecimiento & desarrollo , Clorofila A/metabolismo , Relación Dosis-Respuesta a Droga , Nitrilos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Triazoles/toxicidad
12.
Environ Sci Technol ; 54(23): 15235-15245, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33190479

RESUMEN

The prediction and mechanism analysis of hepatotoxicity of contaminants, because of their various phenotypes and complex mechanisms, is still a key problem in environmental research. We applied a toxicological network analysis method to predict the hepatotoxicity of three hexabromocyclododecane (HBCD) diastereoisomers (α-HBCD, ß-HBCD, and γ-HBCD) and explore their potential mechanisms. First, we collected the hepatotoxicity related genes and found that those genes were significantly localized in the human interactome. Therefore, these genes form a disease module of hepatotoxicity. We also collected targets of α-, ß-, and γ-HBCD and found that their targets overlap with the hepatotoxicity disease module. Then, we trained a model to predict hepatotoxicity of three HBCD diastereoisomers based on the relationship between the hepatotoxicity disease module and targets of compounds. We found that 593 genes were significantly located in the hepatotoxicity disease module (Z = 11.9, p < 0.001) involved in oxidative stress, cellular immunity, and proliferation, and the accuracy of hepatotoxicity prediction of HBCD was 0.7095 ± 0.0193 and the recall score was 0.8355 ± 0.0352. HBCD mainly affects the core disease module genes to mediate the adenosine monophosphate-activated kinase, p38MAPK, PI3K/Akt, and TNFα pathways to regulate the immune reaction and inflammation. HBCD also induces the secretion of IL6 and STAT3 to lead hepatotoxicity by regulating NR3C1. This approach is transferable to other toxicity research studies of environmental pollutants.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Contaminantes Ambientales , Retardadores de Llama , Hidrocarburos Bromados , Humanos , Hidrocarburos Bromados/análisis , Hidrocarburos Bromados/toxicidad , Fosfatidilinositol 3-Quinasas
13.
Environ Pollut ; 265(Pt B): 114848, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32497946

RESUMEN

Ionic liquids (ILs) are considered as extracting solvents in soil remediation. However, they can be pollutants themselves, and their own toxicities are of concerns. Notably, organisms were exposed to pollutants at random life stages in actual environmental exposure scenario, which is different from the set-up of one uniform life stage in usual experiment designs. The influence of life stages on ILs toxicities will provide essential information on their actual environmental risks. In the present study, effects of 1-ethyl-3-methylimidazolium bromide ([C2mim]Br) were measured on C. elegans with egg exposure and adult exposure. In egg exposure, [C2mim]Br increased the lifespan, stimulated initial reproduction and inhibited the total reproduction. Biochemical indices including oxidative stress, antioxidant responses and oxidative damage were further measured to explore the toxicity mechanisms. Results showed that [C2mim]Br significantly stimulated O2-· as the oxidative stress and superoxide dismutase (SOD) as the antioxidant defense. In adult exposure, [C2mim]Br inhibited initial reproduction, total reproduction and lifespan. Biochemical results showed that [C2mim]Br significantly stimulated H2O2 and oxidized glutathione (GSSG). The overall findings demonstrated that [C2mim]Br caused life stage-dependent toxicities on C. elegans. Future studies are still needed for the detailed mechanisms.


Asunto(s)
Caenorhabditis elegans , Líquidos Iónicos , Animales , Peróxido de Hidrógeno , Imidazoles , Estrés Oxidativo
14.
Sci Total Environ ; 712: 136493, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-31935547

RESUMEN

The concentration-response curves (CRCs) of chemicals are important in extrapolating their effects from laboratory studies to their risk assessment in the field. Yet, the CRCs can be altered by exposure concentration and mixture conditions, and also by exposure time in recent reports. Presently, ionic liquids (N-alkylpyridinium chloride, [apyr]Cl) were used for CRC-alteration studies. In individual effects on Vibrio qinghaiensis sp. Q67 (Q67) from 0.25 to 24 h, the CRCs of [epyr]Cl and [bpyr]Cl changed from S- to J-shaped with decreases in inhibition and increases in stimulation, while the CRCs of [hpyr]Cl changed from S- to flat-shape with decreases in inhibition but without stimulation. In mixture effects on Q67, the CRCs all changed from S- to J-shaped from 0.25 to 24 h. By means of the variable selection and modeling method based on the prediction (VSMP), the CRC-alterations of mixtures were positively contributed by [epyr]Cl but negatively contributed by [bpyr]Cl. Furthermore, a parameter was developed by the area of a triangular that combined acute inhibition (EC50,0.25h) and chronic stimulation (Zero-effect Point, i.e., ZEP24h and the minimum inhibition effect, i.e., Emin,24h). This parameter successfully evaluated the CRC-alterations in both individual and mixture effects over time, and indicated potential interactions in CRC-alteration in mixtures.

15.
Sci Total Environ ; 708: 134552, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31787280

RESUMEN

Sulfonamide antibiotics are contaminants of emerging concern (CEC). These CECs raise considerable alarm because they are commonly present in water environments. Studies on the environmental existence of CECs in karst areas of Guilin (Southern China) have yet to be reported. Thus, this study aims to investigate the presence, temporal and spatial distributions of sulfonamides in surface water and groundwater of four major aquatic environments (i.e., aquafarm water, ditch water, wetland water, and groundwater) in the Huixian karst wetland system of Guilin. Furthermore, this study aims to determine the ecological and human health risks of individual sulfonamides and their mixtures. Ten sulfonamides (i.e., sulfadiazine, sulfapyridine, sulfamerazine, trimethoprim, sulfamethazine, sulfamethoxypyridazine, sulfachloropyridazine, sulfamethoxazole, sulfadimethoxine, and sulfaquinoxaline) were observed in the study area. The highest average concentrations of aquafarm water, ditch water, wetland water, and groundwater were those of sulfadiazine (48.24 µg/L), sulfamethoxypyridazine (1281.50 µg/L), sulfamethoxazole (51.14 µg/L), and sulfamethazine (20.06 µg/L), respectively. The potential ecological risks of the detected compounds were much higher in ditch water than in aquafarm water, wetland water, and groundwater. The most ecological risks were observed for sulfachloropyridazine with a risk quotient (RQ) reaching 335.5 to green algae and 152 to Daphnia magna in ditch water. Similarly, sulfachloropyridazine posed the highest ecological risks to green algae among the ten sulfonamides in aquafarm water (RQ = 3.39), wetland water (RQ = 2.98), and groundwater (RQ = 3.6). Human health risk for age groups<12 months was observed from sulfonamide in drinking groundwater. Ecological and human health risks caused by sulfonamide mixtures were larger than the individual risks. Overall, ecological and human health risks caused by sulfonamides were observed in the study area.


Asunto(s)
Agua Subterránea , Antibacterianos , China , Monitoreo del Ambiente , Humanos , Sulfonamidas , Agua , Contaminantes Químicos del Agua , Humedales
16.
Ecotoxicology ; 28(6): 650-657, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31197614

RESUMEN

Glutamate receptors (GLRs) are ligand-gated Ca2+-permeable channels that govern and modulate the dynamic influx of cytosolic Ca2+ in plants. The present study investigated the interaction of OsGLR3 gene expression with subcellular Ca distribution in rice seedlings exposed to chromium (Cr) solution containing Cr(III) or Cr(VI). The results displayed that the accumulation of Ca was evaluated or higher in shoots compared to roots under Cr exposure, and a similar pattern of subcellular Ca distribution was observed between rice tissues exposed to Cr(III) and Cr(VI). Real-time quantitative polymerase chain reaction (qRT-PCR) analysis revealed that eight OsGLR3 isogenes were distinctly expressed in different rice tissues at different levels of Cr exposures. This differential expressions could possible be due to the uptake variations, subcellular distribution and chemical speciation of the two Cr species. Notably, distinct expression patterns of OsGLR3 genes were found between Cr(III) and Cr(VI) exposures, suggesting that different regulation strategies are used to mediate Ca influx in rice materials under different Cr exposures. These results demonstrated a full picture of Cr-induced transcriptional alterations in OsGLR3 expression levels in rice seedlings, and provided suggestive evidence for further investigation on specific OsGLR3 genes participated in the regulation of cytosolic Ca2+ concentrations under Cr exposure.


Asunto(s)
Calcio/metabolismo , Cromo/efectos adversos , Oryza/genética , Proteínas de Plantas/genética , Receptores de Glutamato/genética , Contaminantes del Suelo/efectos adversos , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Glutamato/metabolismo , Plantones/genética , Plantones/metabolismo
17.
Environ Sci Pollut Res Int ; 26(16): 16606-16615, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30989598

RESUMEN

A suitable model to predict the toxicity of current and continuously emerging disinfection by-products (DBPs) is needed. This study aims to establish a reliable model for predicting the cytotoxicity of DBPs to Chinese hamster ovary (CHO) cells. We collected the CHO cytotoxicity data of 74 DBPs as the endpoint to build linear quantitative structure-activity relationship (QSAR) models. The linear models were developed by using multiple linear regression (MLR). The MLR models showed high performance in both internal (leave-one-out cross-validation, leave-many-out cross-validation, and bootstrapping) and external validation, indicating their satisfactory goodness of fit (R2 = 0.763-0.799), robustness (Q2LOO = 0.718-0.745), and predictive ability (CCC = 0.806-0.848). The generated QSAR models showed comparable quality on both the training and validation levels. Williams plot verified that the obtained models had wide application domains and covered the 74 structurally diverse DBPs. The molecular descriptors used in the models provided comparable information that influences the CHO cytotoxicity of DBPs. In conclusion, the linear QSAR models can be used to predict the CHO cytotoxicity of DBPs.


Asunto(s)
Desinfectantes/química , Desinfectantes/toxicidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Animales , Células CHO , Supervivencia Celular/efectos de los fármacos , Cricetinae , Cricetulus , Desinfección , Dosificación Letal Mediana , Modelos Lineales , Análisis Multivariante , Relación Estructura-Actividad Cuantitativa
18.
Environ Pollut ; 250: 375-385, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31022643

RESUMEN

Aromatic halogenated chemicals are an unregulated class of byproducts (DBPs) generated from disinfection processes in the water environment. Information on the toxicological interactions, such as antagonism and synergism, present in DBP mixtures remains limited. This study aimed to determine the toxicological effects of aromatic halogenated DBP mixtures on the freshwater bacterium Vibrio qinghaiensis sp.-Q67. The acute toxicities of seven DBPs and their binary mixtures toward V. qinghaiensis sp.-Q67 were determined through microplate toxicity analysis. The toxicities of single DBPs were ranked as follows: 2,5-dibromohydroquinone > 2,4-dibromophenol > 4-bromo-2-chlorophenol ≈ 2,6-dibromo-4-nitrophenol > 2,6-dichloro-4-nitrophenol > 2-bromo-4-chlorophenol > 4-bromophenol. The percentages of synergism (experimental values higher than the predicted concentration addition) on the levels of 50%, 20%, and 10% effective concentrations reached 61%, 41%, and 31%, respectively. These results indicated that the probability of synergism decreased as concentration levels decreased. The synergetic effects of the compounds were dependent on concentration levels and concentration ratios. The proposed quantitative structure-activity relationship model can be used to predict the interactive toxicities exerted by 105 binary DBP mixture rays of 21 DBP mixture systems.


Asunto(s)
Desinfectantes/toxicidad , Contaminantes Químicos del Agua/toxicidad , Desinfección , Interacciones Farmacológicas , Halogenación , Fenoles/toxicidad , Relación Estructura-Actividad Cuantitativa , Pruebas de Toxicidad , Vibrio/fisiología , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Pollut Res Int ; 26(30): 30554-30560, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29197054

RESUMEN

Six common heavy metals (Ni, Fe, Zn, Pb, Cd, and Cr) in the water environment were selected to present five groups of binary mixture systems (Ni-Fe, Ni-Zn, Ni-Pb, Ni-Cd, and Ni-Cr) through a direct equipartition ray design. Microplate toxicity analysis based on Chlorella pyrenoidosa measured the 96-h joint toxicities of the binary mixtures. Toxicity interaction of the binary mixture was analyzed by comparing the observed toxicity data with the reference model (concentration addition). The results indicated that Ni-Fe, Ni-Pb, and Ni-Cr mixtures showed additive effects at concentration tested. It was indicated that Ni-Zn and Ni-Cd mixtures presented additive effects at low concentrations whereas synergistic effects were seen at high concentrations.


Asunto(s)
Chlorella/efectos de los fármacos , Metales Pesados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente , Metales Pesados/química , Pruebas de Toxicidad , Contaminantes Químicos del Agua/química
20.
Int J Phytoremediation ; 20(11): 1106-1112, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30156923

RESUMEN

To indentify Mn/Cd co-hyperaccumulatoion in Celosia argentea Linn., 2 pot experiments were conducted using Cd/Mn-amended and real contaminated soils, respectively. The interaction between Cd and Mn with regard to their accumulation in the plants was also assessed. The results indicated that C. argentea can simultaneously hyperaccumulate Cd and Mn. The maximum Cd and Mn concentrations in leaves were 276 and 29,000 mg/kg, respectively. Mn application significantly enhanced the biomass production and Cd accumulation in shoots (p < 0.05). However, Cd addition did not reduce Mn accumulation in the plants. The interactions between Cd and Mn in C. argentea differ from what was previously found in hydroponic experiments. This species grew healthy in soils taken from a Cd/Mn-contaminated site, indicating a high tolerance to Cd and Mn. The transfer and bioaccumulation factors of Cd and Mn were greater than 1, which showed that C. argentea had potential for Cd and Mn phytoextraction. Besides its potential practical benefits, C. argentea is an important resource to study the mechanisms of Cd/Mn hyperaccumulation and tolerance in plants.


Asunto(s)
Celosia , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Cadmio/análisis , Manganeso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA