Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 928: 172422, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38614329

RESUMEN

The oily wastewater and heavy metal ions have been increasingly discharged into water environment, posting a serious threat to ecosystems and human health. However, it remains challenging to use single separation technology to effectively remove oil and heavy metal ions in oil-water mixtures simultaneously. Herein, novel hydrophobic/hydrophilic composites (HHC) were successfully prepared by using A4 paper-derived hydrophilic cellulose as the modified matrix, modifying the polydopamine layer and in-situ growth nanoscale zero-valent iron as active adsorption materials, combined with oleic acid-modified hydrophobic magnetic hollow carbon microspheres, which were used to efficiently and rapidly adsorb heavy metals and oil in oil-water mixtures. Under the optimal adsorption conditions, the adsorption amounts of As(III), As(V), Pb(II) and Cu(II) were 289.6 mg/g, 341.9 mg/g, 241.2 mg/g and 277.5 mg/g, respectively, and the mass transfer rate of HHC to the target ions is fast. The HHC have efficient separation performance for layered oil-water mixtures and emulsified oil-water mixtures, with separation efficiency of 97 % and 92 %. At the same time, due to the abundant adsorption sites, the HHC also exhibit splendid regeneration performance for the four ions after multiple adsorption utilization. Our work designed a approach to achieving promising oil and heavy metal adsorbents with higher adsorption capacity and better regenerative properties.

3.
Food Chem ; 410: 135293, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608557

RESUMEN

An ultra-sensitive and selective electrochemical sensor was proposed through the combination of carbon disulfide-functionalized graphene oxide (GOCS) composite with high conductivity and cadmium ion-imprinted polymer (IIP). Using pyrrole as the functional monomer and Cd2+ as the template ion, the IIP was formed by in situ electropolymerization on GOCS composite. Under the optimized experimental conditions, the sensor exhibited a good linear relationship in the range of 0.5-50 µg/L Cd2+ concentration, with the lowest detection limit of 0.23 µg/L. The sensor exhibited not only good selectivity for the determination of Cd2+, but also good repeatability with current response remaining 87.6 % after four cycles. Furthermore, the sensor exhibited similar sensing performance in lettuce, orange and peach with recovery ranging from 82.6 % to 110.63 %. This work is expected to provide an electrochemical sensor with excellent selectivity, good stability and sensitivity for the detection of trace amounts of Cd2+ in real samples.


Asunto(s)
Impresión Molecular , Polímeros , Cadmio , Técnicas Electroquímicas , Límite de Detección , Electrodos
4.
Mikrochim Acta ; 190(1): 35, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542186

RESUMEN

A novel hydrophilic As(V) ion-imprinted cryogel (IIC) was green prepared by cryogelation in aqueous environment which was coincident with the adsorption condition and can improve the specific recognition performance. The methacrylamido propyl trimethyl ammonium chloride (MPTAC) was selected as the functional monomer and the saturated adsorption capacity of the prepared IIC and NIC were 55.0 mg/g and 29.4 mg/g, and with high imprinting factor of 1.87. Additionally, the prepared IIC showed admirable reusability and high selectivity, and the recovery was in the range 81.2-97.9% with RSD range of 1.9-4.3%, which was similar to the value obtained by hydride generation atomic absorption spectrometry. IIC can be used as solid material for colorimetric detection at the ultraviolet wavelength of 858 nm without color interference of material matrix, in the range 5-200 µg/L (R2 = 0.990) with a detection limit of 0.970 µg/L. Obviously, this synthetic strategy provides a simple, efficient, and green method for the preparation of water-compatible ion-imprinted polymers providing selective separation and detection of trace As(V) in real complex samples.


Asunto(s)
Impresión Molecular , Impresión Molecular/métodos , Criogeles/química , Colorimetría , Agua , Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...