Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 370: 122758, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39378803

RESUMEN

Arachis hypogaea L. (peanut) is an economic crop with abundant biomass and remarkable capacity for cadmium (Cd) uptake. In a two-year field experiment, the translocation and accumulation mechanisms of Cd in peanuts were investigated following inoculation of Bacillus megaterium (BM) and Trichoderma harzianum (TH). The results demonstrated that inoculating BM and TH enhanced both biomass and Cd concentration in peanut roots and shoots compared with those of the CK treatment. There was no statistically significant difference observed in kernel biomass between peanut plants inoculated with TH and the CK treatment. The inoculation of BM and TH increased the Cd concentration in the soluble fraction of peanut roots by 24.36% and 102.78%, thus promoting Cd translocation from roots to shoots. Additionally, inoculating BM and TH resulted in a 31.75% and 52.88% elevation in Cd concentration within the leaf cell walls, thereby facilitating the accumulation of Cd within the shoots. Simultaneously, inoculating BM and TH enhanced the concentration of highly bioavailable Cd forms in peanuts. The accumulation of Cd in shoots is the primary factor determining the phytoextraction capacity in peanut, and inoculation of TH resulted in a 16.35-54.54% increase in shoot biomass and an enhancement of 99.10-99.95% in shoot Cd concentration. Therefore, inoculating TH can enhance the phytoextraction capacity for Cd in peanuts, particularly the production of economically valuable components (kernels), without compromising production.

2.
Plant Cell Environ ; 46(3): 669-687, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36581782

RESUMEN

Trichomes are epidermal outgrowths on plant shoots. Their roles in protecting plants against herbivores and in the biosynthesis of specialized metabolites have long been recognized. Recently, studies are increasingly showing that trichomes also play important roles in water absorption and metal detoxication, with these roles having important implications for ecology, the environment, and agriculture. However, these two functions of trichomes have been largely overlooked and much remains unknown. In this review, we show that the trichomes of 37 plant species belonging to 14 plant families are involved in water absorption, while the trichomes of 33 species from 13 families are capable of sequestering metals within their trichomes. The ability of trichomes to absorb water results from their decreased hydrophobicity compared to the remainder of the leaf surface as well as the presence of special structures for collecting and absorbing water. In contrast, the metal detoxication function of trichomes results not only from the good connection of their basal cells to the underlying vascular tissues, but also from the presence of metal-chelating ligands and transporters within the trichomes themselves. Knowledge gaps and critical future research questions regarding these two trichome functions are highlighted. This review improves our understanding on trichomes.


Asunto(s)
Tricomas , Agua , Agua/metabolismo , Tricomas/metabolismo , Metales/metabolismo , Hojas de la Planta/metabolismo , Plantas
3.
Front Bioeng Biotechnol ; 10: 1038829, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324896

RESUMEN

Backgroud: In-situ thrombosis is a significant pathophysiological basis for the development of pulmonary hypertension (PH). However, thrombolytic therapy for in-situ thrombus in PH was often hampered by the apparent side effects and the low bioavailability of common thrombolytic medications. Nanoscale cyclic RGD (cRGD)-decorated liposomes have received much attention thanks to their thrombus-targeting and biodegradability properties. As a result, we synthesized urokinase-loaded cRGD-decorated liposome (UK-cRGD-Liposome) for therapy of in-situ thrombosis as an exploration of pulmonary hypertensive novel therapeutic approaches. Purpose: To evaluate the utilize of UK-cRGD-Liposome for targeted thrombolysis of in-situ thrombus in PH and to explore the potential mechanisms of in-situ thrombus involved in the development of PH. Methods: UK-cRGD-Liposome nanoscale drug delivery system was prepared using combined methods of thin-film hydration and sonication. Induced PH via subcutaneous injection of monocrotaline (MCT). Fibrin staining (modified MSB method) was applied to detect the number of vessels within-situ thrombi in PH. Echocardiography, hematoxylin-eosin (H & E) staining, and Masson's trichrome staining were used to analyze right ventricular (RV) function, pulmonary vascular remodeling, as well as RV remodeling. Results: The number of vessels with in-situ thrombi revealed that UK-cRGD-Liposome could actively target urokinase to in-situ thrombi and release its payload in a controlled manner in the in vivo environment, thereby enhancing the thrombolytic effect of urokinase. Pulmonary artery hemodynamics and echocardiography indicated a dramatical decrease in pulmonary artery pressure and a significant improvement in RV function post targeted thrombolytic therapy. Moreover, pulmonary vascular remodeling and RV remodeling were significantly restricted post targeted thrombolytic therapy. Conclusion: UK-cRGD-Liposome can restrict the progression of PH and improve RV function by targeting the dissolution of pulmonary hypertensive in-situ thrombi, which may provide promising therapeutic approaches for PH.

4.
Front Cardiovasc Med ; 9: 995728, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247441

RESUMEN

Objectives: The success of the rat model of pulmonary hypertension (PH) is primarily dependent on the measurement of pulmonary artery pressure. We herein demonstrate a novel method for measuring pulmonary artery pressure through a high-frequency ultrasound-guided transthoracic puncture in rats. The efficacy and time of this novel method are also discussed. Methods: A single subcutaneous injection of monocrotaline (MCT) was used to establish a rat model of PH. Through the heat shaping method, the tip of that puncture cannula was maintained at a certain angle after the needle core was removed. In-plane real-time guided trocar puncture of the right ventricular outflow tract was performed in the short-axis section of the parasternal aorta. The external pressure sensor was used to record the real-time waveform of right ventricular systolic pressure, pulmonary artery systolic pressure, and diastolic pressure. Results: The success rates of which using this novel method in the model group and the control group were 88.5 and 86.7%, respectively. The time of puncture pressure measurement was 164 ± 31 and 235 ± 50 s, respectively. The right ventricular systolic blood pressure, pulmonary systolic blood pressure, and diastolic blood pressure of the model group were higher than those of the control group. Conclusion: The modified method for trocar is helpful for accurately positioning pulmonary artery manometry. The method described in this paper has a high success rate and short operation time. It can simultaneously measure systolic blood pressure, diastolic blood pressure, and mean pressure of the right ventricle and pulmonary artery. It has a broad application prospect in verifying the rat PH model and pulmonary artery pressure monitoring.

5.
Drug Des Devel Ther ; 16: 801-816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370400

RESUMEN

Purpose: To study the thrombolytic effect and safety of cRGD urokinase liposomes (cRGD-UK-LIP) in rats with acute pulmonary microthromboembolism (APMTE), and explore the application value of echocardiography (ECHO) in animal models. Patients and Methods: Ninety-six SD rats were randomized into 6 groups (16/group): normal control, sham operation, APMTE, normal saline (NS), free urokinase (UK), cRGD-UK-LIP. Four groups (APMTE, NS, UK, cRGD-UK-LIP) of rats were injected with autologous thrombus to induce APMTE. Samples were injected into 3 groups (NS, UK, cRGD-UK-LIP) of rats after modeling. Echocardiography was used to assess right ventricle (RV) function and morphology in rats. Six rats in each group were randomly selected and pulmonary artery pressure (PAP) of them was measured through ECHO-guided transthoracic puncture. Finally, the rats were killed and their tissues were taken for pathological examination. Results: Compared with normal control or sham operation group, rats in APMTE group had enlarged RV, decreased RV function, increased PAP, and lung tissue of them showed postthromboembolic appearance. There was no significant difference between NS group and APMTE group. RV morphology and function of rats in the UK group and cRGD-UK-LIP group were better and vessels with residual thrombus in these 2 groups were less than APMTE group, especially in the cRGD-UK-LIP group. In terms of PAP, only cRGD-UK-LIP group was significantly lower than APMTE group. No hyperemia, bleeding and swelling were observed in heart, liver and kidney of rats in each group. Conclusion: A rat model of APMTE was successfully established. cRGD-UK-LIP has better thrombolytic effect than free urokinase and it is safe. Echocardiography is not merely an important way to evaluate the morphology and function of RV, transthoracic puncture measurement under the guidance of it can be an effective way to monitor PAP in animal models.


Asunto(s)
Liposomas , Activador de Plasminógeno de Tipo Uroquinasa , Animales , Ratas , Pulmón , Ratas Sprague-Dawley , Terapia Trombolítica , Activador de Plasminógeno de Tipo Uroquinasa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...