Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosurg ; 140(4): 1117-1128, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564811

RESUMEN

OBJECTIVE: Standard MRI protocols lack a quantitative sequence that can be used to evaluate shunt-treated patients with a history of hydrocephalus. The objective of this study was to investigate the use of phase-contrast MRI (PC-MRI), a quantitative MR sequence, to measure CSF flow through the shunt and demonstrate PC-MRI as a useful adjunct in the clinical monitoring of shunt-treated patients. METHODS: The rapid (96 seconds) PC-MRI sequence was calibrated using a flow phantom with known flow rates ranging from 0 to 24 mL/hr. Following phantom calibration, 21 patients were scanned with the PC-MRI sequence. Multiple, successive proximal and distal measurements were gathered in 5 patients to test for measurement error in different portions of the shunt system and to determine intrapatient CSF flow variability. The study also includes the first in vivo validations of PC-MRI for CSF shunt flow by comparing phase-contrast-measured flow rate with CSF accumulation in a collection burette obtained in patients with externalized distal shunts. RESULTS: The PC-MRI sequence successfully measured CSF flow rates ranging from 6 to 54 mL/hr in 21 consecutive pediatric patients. Comparison of PC-MRI flow measurement and CSF volume collected in a bedside burette showed good agreement in a patient with an externalized distal shunt. Notably, the distal portion of the shunt demonstrated lower measurement error when compared with PC-MRI measurements acquired in the proximal catheter. CONCLUSIONS: The PC-MRI sequence provided accurate and reliable clinical measurements of CSF flow in shunt-treated patients. This work provides the necessary framework to include PC-MRI as an immediate addition to the clinical setting in the noninvasive evaluation of shunt function and in future clinical investigations of CSF physiology.


Asunto(s)
Derivaciones del Líquido Cefalorraquídeo , Hidrocefalia , Humanos , Niño , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/cirugía , Imagen por Resonancia Magnética/métodos , Procedimientos Neuroquirúrgicos , Prótesis e Implantes , Líquido Cefalorraquídeo/fisiología
2.
Dis Model Mech ; 16(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37902188

RESUMEN

Fluorescent reporter pluripotent stem cell-derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of guanine nucleotide-binding protein subunit alpha transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP alleles robustly and exclusively labeled immature and mature cones. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of the morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 µm3 per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Fotorreceptoras Retinianas Conos , Humanos , Células Fotorreceptoras Retinianas Conos/metabolismo , Retina/metabolismo , Organoides , Diferenciación Celular
3.
bioRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909527

RESUMEN

Fluorescent reporter pluripotent stem cell (PSC) derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of Guanine Nucleotide-Binding Protein Subunit Alpha Transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP allele robustly and exclusively labeled both immature and mature cones starting at culture day 34. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 cubic microns per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.

4.
J Neurosurg ; 138(2): 367-373, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35901769

RESUMEN

OBJECTIVE: Advancements in MRI technology have provided improved ways to acquire imaging data and to more seamlessly incorporate MRI into modern pediatric surgical practice. One such situation is image-guided navigation for pediatric neurosurgical procedures, including intracranial catheter placement. Image-guided surgery (IGS) requires acquisition of CT or MR images, but the former carries the risk of ionizing radiation and the latter is associated with long scan times and often requires pediatric patients to be sedated. The objective of this project was to circumvent the use of CT and standard-sequence MRI in ventricular neuronavigation by investigating the use of fast MR sequences on the basis of 3 criteria: scan duration comparable to that of CT acquisition, visualization of ventricular morphology, and image registration with surface renderings comparable to standard of care. The aim of this work was to report image development, implementation, and results of registration accuracy testing in healthy subjects. METHODS: The authors formulated 11 candidate MR sequences on the basis of the standard IGS protocol, and various scan parameters were modified, such as k-space readout direction, partial k-space acquisition, sparse sampling of k-space (i.e., compressed sensing), in-plane spatial resolution, and slice thickness. To evaluate registration accuracy, the authors calculated target registration error (TRE). A candidate sequence was selected for further evaluation in 10 healthy subjects. RESULTS: The authors identified a candidate imaging protocol, termed presurgical imaging with compressed sensing for time optimization (PICO). Acquisition of the PICO protocol takes 25 seconds. The authors demonstrated noninferior TRE for PICO (3.00 ± 0.19 mm) in comparison with the default MRI neuronavigation protocol (3.35 ± 0.20 mm, p = 0.20). CONCLUSIONS: The developed and tested sequence of this work allowed accurate intraoperative image registration and provided sufficient parenchymal contrast for visualization of ventricular anatomy. Further investigations will evaluate use of the PICO protocol as a substitute for CT and conventional MRI protocols in ventricular neuronavigation.


Asunto(s)
Neuronavegación , Cirugía Asistida por Computador , Humanos , Niño , Neuronavegación/métodos , Encéfalo , Imagen por Resonancia Magnética/métodos , Procedimientos Neuroquirúrgicos/métodos
5.
Mol Imaging Biol ; 24(4): 526-536, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35041149

RESUMEN

COVID-19 hypoxemic patients although sharing a same etiology (SARS-CoV-2 infection) present themselves quite differently from one another. Patients also respond differently to prescribed medicine and to prone Vs supine bed positions. A severe pulmonary ventilation-perfusion mismatch usually triggers moderate to severe COVID-19 cases. Imaging can aid the physician in assessing severity of COVID-19. Although useful for their portability X-ray and ultrasound serving on the frontline to evaluate lung parenchymal abnormalities are unable to provide information about pulmonary vasculature and blood flow redistribution which is a consequence of hypoxemia in COVID-19. Advanced imaging modalities such as computed tomography, single-photon emission tomography, and electrical impedance tomography use a sharp algorithm visualizing pulmonary ventilation-perfusion mismatch in the abnormal and in the apparently normal parenchyma. Imaging helps to access the severity of infection, lung performance, ventilation-perfusion mismatch, and informs strategies for medical treatment. This review summarizes the capacity of these imaging modalities to assess ventilation-perfusion mismatch in COVID-19. Despite having limitations, these modalities provide vital information on blood volume distribution, pulmonary embolism, pulmonary vasculature and are useful to assess severity of lung disease and effectiveness of treatment in COVID-19 patients.


Asunto(s)
COVID-19 , Embolia Pulmonar , COVID-19/diagnóstico por imagen , Humanos , Pulmón/diagnóstico por imagen , Perfusión , SARS-CoV-2 , Tomografía Computarizada de Emisión de Fotón Único/métodos
6.
Ophthalmol Ther ; 9(4): 929-940, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32740740

RESUMEN

PURPOSE: To qualitatively evaluate the ocular and periocular distribution of 14C-latanoprost following a single intracameral administration or repeated topical ocular administration in beagle dogs and cynomolgus monkeys. METHODS: In the dog study, three animals received an intracameral dose of 14C-latanoprost bilaterally and were euthanized at 1, 2, and 4 h post dose; three control animals received topical 14C-latanoprost bilaterally once daily for 5 days and were euthanized at 1, 4, and 24 h post final dose. Sagittal 40-µm sections of eyes with surrounding tissues were collected and processed for autoradiography. Methods in the monkey study were similar; two animals received a unilateral intracameral dose of 14C-latanoprost. RESULTS: After intracameral dosing in dogs, radioactivity was concentrated in the cornea, iris, ciliary body, and anterior chamber with no radioactivity detected in the eyelids or other periorbital tissues. After topical dosing, radioactivity was distributed in the bulbar conjunctiva, cornea, anterior chamber, iris, ciliary body, upper and lower eyelids, and periorbital tissues (fat/muscle). After intracameral dosing in monkeys, radioactivity was concentrated in the anterior chamber, cornea, iris, ciliary body, and posteriorly along the uveoscleral outflow pathway; there was no radioactivity in the eyelids or periorbital tissues aside from signal in the nasolacrimal duct, likely from reflux of 14C-latanoprost into the tear film. CONCLUSIONS: Intracameral delivery resulted in more selective target tissue drug exposure. Intracameral drug delivery has potential to reduce ocular surface and periocular adverse effects associated with topical administration of prostaglandin analogues, such as eyelash growth and periorbital fat atrophy.

7.
PLoS One ; 14(1): e0206394, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30608927

RESUMEN

Leptomeningeal metastasis remains a difficult clinical challenge. Some success has been achieved by direct administration of therapeutics into the cerebrospinal fluid (CSF) circumventing limitations imposed by the blood brain barrier. Here we investigated continuous infusion versus bolus injection of therapy into the CSF in a preclinical model of human Group 3 medulloblastoma, the molecular subgroup with the highest incidence of leptomeningeal disease. Initial tests of selected Group 3 human medulloblastoma cell lines in culture showed that D283 Med and D425 Med were resistant to cytosine arabinoside and methotrexate. D283 Med cells were also resistant to topotecan, whereas 1 µM topotecan killed over 99% of D425 Med cells. We therefore introduced D425 Med cells, modified to express firefly luciferase, into the CSF of immunodeficient mice. Mice were then treated with topotecan or saline in five groups: continuous intraventricular (IVT) topotecan via osmotic pump (5.28 µg/day), daily bolus IVT topotecan injections with a similar daily dose (6 µg/day), systemic intraperitoneal injections of a higher daily dose of topotecan (15 µg/day), daily IVT pumped saline and daily intraperitoneal injections of saline. Bioluminescence analyses revealed that both IVT topotecan treatments effectively slowed leptomeningeal tumor growth in the brains. Histological analysis showed that they were associated with localized brain necrosis, possibly due to backtracking of topotecan around the catheter. In the spines, bolus IVT topotecan showed a trend towards slower tumor growth compared to continuous (pump) IVT topotecan, as measured by bioluminescence. Both continuous and bolus topotecan IVT showed longer survival compared to other groups. Thus, both direct IVT topotecan CSF delivery methods produced better anti-medulloblastoma effect compared to systemic therapy at the dosages used here.


Asunto(s)
Meduloblastoma/tratamiento farmacológico , Neoplasias Meníngeas/tratamiento farmacológico , Inhibidores de Topoisomerasa I/administración & dosificación , Topotecan/administración & dosificación , Animales , Línea Celular Tumoral , Femenino , Humanos , Infusiones Intraventriculares , Inyecciones Intraventriculares/métodos , Meduloblastoma/mortalidad , Meduloblastoma/patología , Neoplasias Meníngeas/mortalidad , Neoplasias Meníngeas/patología , Meninges/patología , Ratones , Ratones Transgénicos , Análisis de Supervivencia , Factores de Tiempo , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Invest Ophthalmol Vis Sci ; 58(9): 3311-3318, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28672397

RESUMEN

Purpose: Human pluripotent stem cell (hPSC)-derived retinal organoids are a platform for investigating retinal development, pathophysiology, and cellular therapies. In contrast to histologic analysis in which multiple specimens fixed at different times are used to reconstruct developmental processes, repeated analysis of the same living organoids provides a more direct means to characterize changes. New live imaging modalities can provide insights into retinal organoid structure and metabolic function during in vitro growth. This study employed live tissue imaging to characterize retinal organoid development, including metabolic changes accompanying photoreceptor differentiation. Methods: Live hPSC-derived retinal organoids at different developmental stages were examined for microanatomic organization and metabolic function by phase contrast microscopy, optical coherence tomography (OCT), fluorescence lifetime imaging microscopy (FLIM), and hyperspectral imaging (HSpec). Features were compared to those revealed by histologic staining, immunostaining, and microcomputed tomography (micro-CT) of fixed organoid tissue. Results: We used FLIM and HSpec to detect changes in metabolic activity as organoids differentiated into organized lamellae. FLIM detected increased glycolytic activity and HSpec detected retinol and retinoic acid accumulation in the organoid outer layer, coinciding with photoreceptor genesis. OCT enabled imaging of lamellae formed during organoid maturation. Micro-CT revealed three-dimensional structure, but failed to detect lamellae. Conclusions: Live imaging modalities facilitate real-time and nondestructive imaging of retinal organoids as they organize into lamellar structures. FLIM and HSpec enable rapid detection of lamellar structure and photoreceptor metabolism. Live imaging techniques may aid in the continuous evaluation of retinal organoid development in diverse experimental and cell therapy settings.


Asunto(s)
Técnicas de Diagnóstico Oftalmológico , Organoides/diagnóstico por imagen , Células Madre Pluripotentes/citología , Retina/citología , Humanos , Microscopía Fluorescente/métodos , Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica , Microtomografía por Rayos X
9.
Stem Cells Transl Med ; 6(6): 1522-1532, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28481046

RESUMEN

Engineered neural stem cells (NSCs) intrinsically migrating to brain tumors offer a promising mechanism for local therapeutic delivery. However, difficulties in quantitative assessments of NSC migration and in estimates of tumor coverage by diffusible therapeutics have impeded development and refinement of NSC-based therapies. To address this need, we developed techniques by which conventional serial-sectioned formalin-fixed paraffin-embedded (FFPE) brains can be analyzed in their entirety across multiple test animals. We considered a conventional human glioblastoma model: U251 glioma cells orthotopically engrafted in immunodeficient mice receiving intracerebral (i.c.) or intravenous (i.v.) administrations of NSCs expressing a diffusible enzyme to locally catalyze chemotherapeutic formation. NSC migration to tumor sites was dose-dependent, reaching 50%-60% of total administered NSCs for the i.c route and 1.5% for the i.v. route. Curiously, the most efficient NSC homing was seen with smaller NSC doses, implying existence of rate-limiting process active during administration and/or migration. Predicted tumor exposure to a diffusing therapeutic (assuming a 50 µm radius of action) could reach greater than 50% of the entire tumor volume for i.c. and 25% for i.v. administration. Within individual sections, coverage of tumor area could be as high as 100% for i.c. and 70% for i.v. routes. Greater estimated therapeutic coverage was observed for larger tumors and for larger tumor regions in individual sections. Overall, we have demonstrated a framework within which investigators may rationally evaluate NSC migration to, and integration into, brain tumors, and therefore enhance understanding of mechanisms that both promote and limit this therapeutic modality. Stem Cells Translational Medicine 2017;6:1522-1532.


Asunto(s)
Neoplasias Encefálicas/terapia , Movimiento Celular , Glioma/terapia , Células-Madre Neurales/citología , Trasplante de Células Madre/métodos , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones SCID , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante
10.
Sci Rep ; 7(1): 835, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28400607

RESUMEN

Phosphotyrosine Interaction Domain containing 1 (PID1; NYGGF4) inhibits growth of medulloblastoma, glioblastoma and atypical teratoid rhabdoid tumor cell lines. PID1 tumor mRNA levels are highly correlated with longer survival in medulloblastoma and glioma patients, suggesting their tumors may have been more sensitive to therapy. We hypothesized that PID1 sensitizes brain tumors to therapy. We found that PID1 increased the apoptosis induced by cisplatin and etoposide in medulloblastoma and glioblastoma cell lines. PID1 siRNA diminished cisplatin-induced apoptosis, suggesting that PID1 is required for cisplatin-induced apoptosis. Etoposide and cisplatin increased NFκB promoter reporter activity and etoposide induced nuclear translocation of NFκB. Etoposide also increased PID1 promoter reporter activity, PID1 mRNA, and PID1 protein, which were diminished by NFκB inhibitors JSH-23 and Bay117082. However, while cisplatin increased PID1 mRNA, it decreased PID1 protein. This decrease in PID1 protein was mitigated by the proteasome inhibitor, bortezomib, suggesting that cisplatin induced proteasome dependent degradation of PID1. These data demonstrate for the first time that etoposide- and cisplatin-induced apoptosis in medulloblastoma and glioblastoma cell lines is mediated in part by PID1, involves NFκB, and may be regulated by proteasomal degradation. This suggests that PID1 may contribute to responsiveness to chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Portadoras/genética , Glioblastoma/metabolismo , Meduloblastoma/metabolismo , Apoptosis/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Etopósido/farmacología , Células HEK293 , Humanos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo
11.
Mol Ther Oncolytics ; 4: 67-76, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28345025

RESUMEN

Despite improved survival for children with newly diagnosed neuroblastoma (NB), recurrent disease is a significant problem, with treatment options limited by anti-tumor efficacy, patient drug tolerance, and cumulative toxicity. We previously demonstrated that neural stem cells (NSCs) expressing a modified rabbit carboxylesterase (rCE) can distribute to metastatic NB tumor foci in multiple organs in mice and convert the prodrug irinotecan (CPT-11) to the 1,000-fold more toxic topoisomerase-1 inhibitor SN-38, resulting in significant therapeutic efficacy. We sought to extend these studies by using a clinically relevant NSC line expressing a modified human CE (hCE1m6-NSCs) to establish proof of concept and identify an intravenous dose and treatment schedule that gave maximal efficacy. Human-derived NB cell lines were significantly more sensitive to treatment with hCE1m6-NSCs and irinotecan as compared with drug alone. This was supported by pharmacokinetic studies in subcutaneous NB mouse models demonstrating tumor-specific conversion of irinotecan to SN-38. Furthermore, NB-bearing mice that received repeat treatment with intravenous hCE1m6-NSCs and irinotecan showed significantly lower tumor burden (1.4-fold, p = 0.0093) and increased long-term survival compared with mice treated with drug alone. These studies support the continued development of NSC-mediated gene therapy for improved clinical outcome in NB patients.

12.
Surgery ; 161(4): 1016-1027, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28011012

RESUMEN

BACKGROUND: In short bowel syndrome, luminal factors influence adaptation in which the truncated intestine increases villus lengths and crypt depths to increase nutrient absorption. No study has evaluated the effect of adaptation within the distal intestine after intestinal separation. We evaluated multiple conditions, including Igf1r inhibition, in proximal and distal segments after intestinal resection to evaluate the epithelial effects of the absence of mechanoluminal stimulation. METHODS: Short bowel syndrome was created in adult male zebrafish by performing a proximal stoma with ligation of the distal intestine. These zebrafish with short bowel syndrome were compared to sham-operated zebrafish. Groups were treated with the Igf1r inhibitor NVP-AEW541, DMSO, a vehicle control, or water for 2 weeks. Proximal and distal intestine were analyzed by hematoxylin and eosin for villus epithelial circumference, inner epithelial perimeter, and circumference. We evaluated BrdU+ cells, including costaining for ß-catenin, and the microbiome was evaluated for changes. Reverse transcription quantitative polymerase chain reaction was performed for ß-catenin, CyclinD1, Sox9a, Sox9b, and c-Myc. RESULTS: Proximal intestine demonstrated significantly increased adaptation compared to sham-operated proximal intestine, whereas the distal intestine showed no adaptation in the absence of luminal flow. Addition of the Igf1r inhibitor resulted in decreased adaption in the distal intestine but an increase in distal proliferative cells and proximal ß-catenin expression. While some proximal proliferative cells in short bowel syndrome colocalized ß-catenin and BrdU, the distal proliferative cells did not co-stain for ß-catenin. Sox9a increased in the distal limb after division but not after inhibition with the Igf1r inhibitor. There was no difference in alpha diversity or species richness of the microbiome between all groups. CONCLUSION: Luminal flow in conjunction with short bowel syndrome significantly increases intestinal adaption within the proximal intestine in which proliferative cells contain ß-catenin. Addition of an Igf1r inhibitor decreases adaptation in both proximal and distal limbs while increasing distal proliferative cells that do not colocalize ß-catenin. Igf1r inhibition abrogates the increase in distal Sox9a expression that otherwise occurs in short bowel syndrome. Mechanoluminal flow is an important stimulus for intestinal adaptation.


Asunto(s)
Intestino Delgado/efectos de los fármacos , Intestino Delgado/cirugía , Pirimidinas/antagonistas & inhibidores , Pirroles/antagonistas & inhibidores , Síndrome del Intestino Corto/patología , Adaptación Fisiológica/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Biopsia con Aguja , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Inmunohistoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Pirimidinas/farmacología , Pirroles/farmacología , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa , Valores de Referencia , Sensibilidad y Especificidad , Síndrome del Intestino Corto/tratamiento farmacológico , Síndrome del Intestino Corto/cirugía , Pez Cebra , beta Catenina/metabolismo
13.
PLoS One ; 11(6): e0156907, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27310018

RESUMEN

Medulloblastomas are the most common malignant pediatric brain tumor and have been divided into four major molecular subgroups. Animal models that mimic the principal molecular aberrations of these subgroups will be important tools for preclinical studies and allow greater understanding of medulloblastoma biology. We report a new transgenic model of medulloblastoma that possesses a unique combination of desirable characteristics including, among others, the ability to incorporate multiple and variable genes of choice and to produce bioluminescent tumors from a limited number of somatic cells within a normal cellular environment. This model, termed BarTeL, utilizes a Barhl1 homeobox gene promoter to target expression of a bicistronic transgene encoding both the avian retroviral receptor TVA and an eGFP-Luciferase fusion protein to neonatal cerebellar granule neuron precursor (cGNP) cells, which are cells of origin for the sonic hedgehog (SHH) subgroup of human medulloblastomas. The Barhl1 promoter-driven transgene is expressed strongly in mammalian cGNPs and weakly or not at all in mature granule neurons. We efficiently induced bioluminescent medulloblastomas expressing eGFP-luciferase in BarTeL mice by infection of a limited number of somatic cGNPs with avian retroviral vectors encoding the active N-terminal fragment of SHH and a stabilized MYCN mutant. Detection and quantification of the increasing bioluminescence of growing tumors in young BarTeL mice was facilitated by the declining bioluminescence of their uninfected maturing cGNPs. Inclusion of eGFP in the transgene allowed enriched sorting of cGNPs from neonatal cerebella. Use of a single bicistronic avian vector simultaneously expressing both Shh and Mycn oncogenes increased the medulloblastoma incidence and aggressiveness compared to mixed virus infections. Bioluminescent tumors could also be produced by ex vivo transduction of neonatal BarTeL cerebellar cells by avian retroviruses and subsequent implantation into nontransgenic cerebella. Thus, BarTeL mice provide a versatile model with opportunities for use in medulloblastoma biology and therapeutics.


Asunto(s)
Neoplasias Cerebelosas/genética , Cerebelo/metabolismo , Efecto Fundador , Meduloblastoma/genética , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Diferenciación Celular , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Cerebelo/crecimiento & desarrollo , Cerebelo/patología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes , Masculino , Meduloblastoma/metabolismo , Meduloblastoma/patología , Ratones , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/patología , Neuronas/patología , Regiones Promotoras Genéticas , Receptores Virales/genética , Receptores Virales/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Retroviridae/genética , Retroviridae/metabolismo
14.
J Neurooncol ; 129(1): 47-56, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27177628

RESUMEN

Vestibular schwannoma is a benign neoplasm arising from the Schwann cell sheath of the auditory-vestibular nerve. It most commonly affects both sides in the genetic condition Neurofibromatosis type 2, causing progressive high frequency sensorineural hearing loss. Here, we describe a microsurgical technique and stereotactic coordinates for schwannoma cell grafting in the vestibular nerve region that recapitulates local tumor growth in the cerebellopontine angle and inner auditory canal with resulting hearing loss. Tumor growth was monitored by bioluminescence and MRI in vivo imaging, and hearing assessed by auditory brainstem responses. These techniques, by potentially enabling orthotopic grafting of a variety of cell lines will allow studies on the pathogenesis of tumor-related hearing loss and preclinical drug evaluation, including hearing endpoints, for NF2-related and sporadic schwannomas.


Asunto(s)
Modelos Animales de Enfermedad , Pérdida Auditiva/fisiopatología , Neuroma Acústico/fisiopatología , Trasplante Homólogo , Animales , Línea Celular Tumoral , Potenciales Evocados Auditivos del Tronco Encefálico , Pérdida Auditiva/etiología , Ratones , Ratones Endogámicos BALB C , Neurofibromatosis 2/genética , Neuroma Acústico/complicaciones , Nervio Vestibulococlear/cirugía
15.
Nat Commun ; 6: 6798, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25865282

RESUMEN

The diverse morphology of vertebrate skeletal system is genetically controlled, yet the means by which cells shape the skeleton remains to be fully illuminated. Here we perform quantitative analyses of cell behaviours in the growth plate cartilage, the template for long bone formation, to gain insights into this process. Using a robust avian embryonic organ culture, we employ time-lapse two-photon laser scanning microscopy to observe proliferative cells' behaviours during cartilage growth, resulting in cellular trajectories with a spreading displacement mainly along the tissue elongation axis. We build a novel software toolkit of quantitative methods to segregate the contributions of various cellular processes to the cellular trajectories. We find that convergent-extension, mitotic cell division, and daughter cell rearrangement do not contribute significantly to the observed growth process; instead, extracellular matrix deposition and cell volume enlargement are the key contributors to embryonic cartilage elongation.


Asunto(s)
Cartílago/ultraestructura , Condrocitos/ultraestructura , Fibroblastos/ultraestructura , Placa de Crecimiento/ultraestructura , Huesos del Metacarpo/ultraestructura , Osteogénesis/fisiología , Animales , Cartílago/embriología , Cartílago/metabolismo , División Celular , Movimiento Celular , Tamaño de la Célula , Embrión de Pollo , Condrocitos/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Placa de Crecimiento/embriología , Placa de Crecimiento/metabolismo , Huesos del Metacarpo/embriología , Huesos del Metacarpo/metabolismo , Microscopía Confocal , Técnicas de Cultivo de Órganos , Fotones , Retroviridae/genética , Imagen de Lapso de Tiempo
16.
Dev Biol ; 400(1): 148-58, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25641694

RESUMEN

Mechanistic understanding of evolutionary divergence in animal body plans devolves from analysis of those developmental processes that, in forms descendant from a common ancestor, are responsible for their morphological differences. The last common ancestor of the two extant subclasses of sea urchins, i.e., euechinoids and cidaroids, existed well before the Permian/Triassic extinction (252 mya). Subsequent evolutionary divergence of these clades offers in principle a rare opportunity to solve the developmental regulatory events underlying a defined evolutionary divergence process. Thus (i) there is an excellent and fairly dense (if yet incompletely analyzed) fossil record; (ii) cladistically confined features of the skeletal structures of modern euechinoid and cidaroid sea urchins are preserved in fossils of ancestral forms; (iii) euechinoids and cidaroids are among current laboratory model systems in molecular developmental biology (here Strongylocentrotus purpuratus [Sp] and Eucidaris tribuloides [Et]); (iv) skeletogenic specification in sea urchins is uncommonly well understood at the causal level of interactions of regulatory genes with one another, and with known skeletogenic effector genes, providing a ready arsenal of available molecular tools. Here we focus on differences in test and perignathic girdle skeletal morphology that distinguish all modern euechinoid from all modern cidaroid sea urchins. We demonstrate distinct canonical test and girdle morphologies in juveniles of both species by use of SEM and X-ray microtomography. Among the sharply distinct morphological features of these clades are the internal skeletal structures of the perignathic girdle to which attach homologous muscles utilized for retraction and protraction of Aristotles׳ lantern and its teeth. We demonstrate that these structures develop de novo between one and four weeks after metamorphosis. In order to study the underlying developmental processes, a method of section whole mount in situ hybridization was adapted. This method displays current gene expression in the developing test and perignathic girdle skeletal elements of both Sp and Et juveniles. Active, specific expression of the sm37 biomineralization gene in these muscle attachment structures accompanies morphogenetic development of these clade-specific features in juveniles of both species. Skeletogenesis at these clade-specific muscle attachment structures displays molecular earmarks of the well understood embryonic skeletogenic GRN: thus the upstream regulatory gene alx1 and the gene encoding the vegfR signaling receptor are both expressed at the sites where they are formed. This work opens the way to analysis of the alternative spatial specification processes that were installed at the evolutionary divergence of the two extant subclasses of sea urchins.


Asunto(s)
Evolución Biológica , Fósiles , Regulación del Desarrollo de la Expresión Génica/fisiología , Morfogénesis/fisiología , Filogenia , Erizos de Mar/crecimiento & desarrollo , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación in Situ , Microscopía Electrónica de Rastreo , Especificidad de la Especie , Microtomografía por Rayos X
17.
J Inorg Biochem ; 140: 39-44, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25061689

RESUMEN

We are investigating the biological and biomedical imaging roles and impacts of fluorescent metallocorrole-TiO2 nanoconjugates as potential near-infrared optical contrast agents in vitro in cancer and normal cell lines. The TiO2 nanoconjugate labeled with the small molecule 2,17-bis(chlorosulfonyl)-5,10,15-tris(pentafluorophenyl)corrolato aluminum(III) (1-Al-TiO2) was prepared. The nanoparticle 1-Al-TiO2 was characterized by transmission electron microscopy (TEM) and integrating-sphere electronic absorption spectroscopy. TEM images of three different samples of TiO2 nanoparticles (bare, H2O2 etched, and 1-Al functionalized) showed similarity in shapes and sizes with an average diameter of 29nm for 1-Al-TiO2. Loading of 1-Al on the TiO2 surfaces was determined to be ca. 20-40mg 1-Al/g TiO2. Confocal fluorescence microscopy (CFM) studies of luciferase-transfected primary human glioblastoma U87-Luc cells treated with the nanoconjugate 1-Al-TiO2 as the contrast agent in various concentrations were performed. The CFM images revealed that 1-Al-TiO2 was found inside the cancer cells even at low doses (0.02-2µg/mL) and localized in the cytosol. Bioluminescence studies of the U87-Luc cells exposed to various amounts of 1-Al-TiO2 showed minimal cytotoxic effects even at higher doses (2-2000µg/mL) after 24h. A similar observation was made using primary mouse hepatocytes (PMH) treated with 1-Al-TiO2 at low doses (0.0003-3µg/mL). Longer incubation times (after 48 and 72h for U87-Luc) and higher doses (>20µg/mL 1-Al-TiO2 for U87-Luc and >3µg/mL 1-Al-TiO2 for PMH) showed decreased cell viability.


Asunto(s)
Nanoestructuras , Porfirinas/química , Espectroscopía Infrarroja Corta/métodos , Titanio/química , Animales , Células Cultivadas , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , Ratones , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Nanoestructuras/toxicidad
18.
Stem Cells Transl Med ; 2(10): 766-75, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24014682

RESUMEN

Numerous stem cell-based therapies are currently under clinical investigation, including the use of neural stem cells (NSCs) as delivery vehicles to target therapeutic agents to invasive brain tumors. The ability to monitor the time course, migration, and distribution of stem cells following transplantation into patients would provide critical information for optimizing treatment regimens. No effective cell-tracking methodology has yet garnered clinical acceptance. A highly promising noninvasive method for monitoring NSCs and potentially other cell types in vivo involves preloading them with ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) to enable cell tracking using magnetic resonance imaging (MRI). We report here the preclinical studies that led to U.S. Food and Drug Administration approval for first-in-human investigational use of ferumoxytol to label NSCs prior to transplantation into brain tumor patients, followed by surveillance serial MRI. A combination of heparin, protamine sulfate, and ferumoxytol (HPF) was used to label the NSCs. HPF labeling did not affect cell viability, growth kinetics, or tumor tropism in vitro, and it enabled MRI visualization of NSC distribution within orthotopic glioma xenografts. MRI revealed dynamic in vivo NSC distribution at multiple time points following intracerebral or intravenous injection into glioma-bearing mice that correlated with histological analysis. Preclinical safety/toxicity studies of intracerebrally administered HPF-labeled NSCs in mice were also performed, and they showed no significant clinical or behavioral changes, no neuronal or systemic toxicities, and no abnormal accumulation of iron in the liver or spleen. These studies support the clinical use of ferumoxytol labeling of cells for post-transplant MRI visualization and tracking.


Asunto(s)
Rastreo Celular/métodos , Óxido Ferrosoférrico , Imagen por Resonancia Magnética/métodos , Células-Madre Neurales/trasplante , Coloración y Etiquetado/métodos , Trasplante de Células Madre/métodos , Animales , Humanos , Inmunohistoquímica , Ratones
19.
Sci Transl Med ; 5(184): 184ra59, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23658244

RESUMEN

High-grade gliomas are extremely difficult to treat because they are invasive and therefore not curable by surgical resection; the toxicity of current chemo- and radiation therapies limits the doses that can be used. Neural stem cells (NSCs) have inherent tumor-tropic properties that enable their use as delivery vehicles to target enzyme/prodrug therapy selectively to tumors. We used a cytosine deaminase (CD)-expressing clonal human NSC line, HB1.F3.CD, to home to gliomas in mice and locally convert the prodrug 5-fluorocytosine to the active chemotherapeutic 5-fluorouracil. In vitro studies confirmed that the NSCs have normal karyotype, tumor tropism, and CD expression, and are genetically and functionally stable. In vivo biodistribution studies demonstrated NSC retention of tumor tropism, even in mice pretreated with radiation or dexamethasone to mimic clinically relevant adjuvant therapies. We evaluated safety and toxicity after intracerebral administration of the NSCs in non-tumor-bearing and orthotopic glioma-bearing immunocompetent and immunodeficient mice. We detected no difference in toxicity associated with conversion of 5-fluorocytosine to 5-fluorouracil, no NSCs outside the brain, and no histological evidence of pathology or tumorigenesis attributable to the NSCs. The average tumor volume in mice that received HB1.F3.CD NSCs and 5-fluorocytosine was about one-third that of the average volume in control mice. On the basis of these results, we conclude that combination therapy with HB1.F3.CD NSCs and 5-fluorocytosine is safe, nontoxic, and effective in mice. These data have led to approval of a first-in-human study of an allogeneic NSC-mediated enzyme/prodrug-targeted cancer therapy in patients with recurrent high-grade glioma.


Asunto(s)
Glioma/tratamiento farmacológico , Glioma/terapia , Células-Madre Neurales/citología , Profármacos/uso terapéutico , Animales , Línea Celular , Citosina Desaminasa/metabolismo , Femenino , Citometría de Flujo , Flucitosina/metabolismo , Flucitosina/uso terapéutico , Fluorouracilo/metabolismo , Humanos , Masculino , Ratones , Ratones Desnudos , Células-Madre Neurales/metabolismo , Profármacos/metabolismo
20.
Inorg Chem ; 52(9): 4774-6, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23611256

RESUMEN

We have prepared 2,17-bis(chlorosulfonyl)-5,10,15-tris(pentafluorophenyl)corrole (1), 2,17-bis(chlorosulfonyl)-5,10,15-tris(pentafluorophenyl)corrolatoaluminum(III) (1-Al), and 2,17-bis(chlorosulfonyl)-5,10,15-tris(pentafluorophenyl)corrolatogallium(III) (1-Ga). The metal complexes 1-Al and 1-Ga were isolated and characterized by electronic absorption and NMR spectroscopies, as well as by mass spectrometry. Relative emission quantum yields for 1, 1-Al, and 1-Ga, determined in toluene, are 0.094, 0.127, and 0.099, respectively. Reactions between 1, 1-Al, and 1-Ga and TiO2 nanoparticles (NPs) result in corrole-TiO2 NP conjugates. The functionalized NP surfaces were investigated by solid-state Fourier transform infrared and X-ray photoelectron spectroscopies and by confocal fluorescence imaging. The fluorescence images for 1-Al-TiO2 and 1-Ga-TiO2 suggest a promising application of these NP conjugates as contrast agents for noninvasive optical imaging.


Asunto(s)
Colorantes Fluorescentes/química , Nanopartículas/química , Porfirinas/química , Titanio/química , Aluminio/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Colorantes Fluorescentes/síntesis química , Galio/química , Halogenación , Nanopartículas/ultraestructura , Porfirinas/síntesis química , Sulfonas/síntesis química , Sulfonas/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...