Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 33(14): e17435, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38877757

RESUMEN

Linking reproductive fitness with adaptive traits at the genomic level can shed light on the mechanisms that produce and maintain sex-specific selection. Here, we construct a multigenerational pedigree to investigate sex-specific selection on a maturation gene, vgll3, in a wild Atlantic salmon population. The vgll3 locus is responsible for ~40% of the variation in maturation (sea age at first reproduction). Genetic parentage analysis was conducted on 18,265 juveniles (parr) and 685 adults collected at the same spawning ground over eight consecutive years. A high proportion of females (26%) were iteroparous and reproduced two to four times in their lifetime. A smaller proportion of males (9%) spawned at least twice in their lifetime. Sex-specific patterns of reproductive fitness were related to vgll3 genotype. Females showed a pattern of overdominance where vgll3*EL genotypes had three-fold more total offspring than homozygous females. In contrast, males demonstrated that late-maturing vgll3*LL individuals had two-fold more offspring than either vgll3*EE or vgll3*EL males. Taken together, these data suggest that balancing selection in females contributes to the maintenance of variation at this locus via increased fitness of iteroparous vgll3*EL females. This study demonstrates the utility of multigenerational pedigrees for uncovering complex patterns of reproduction, sex-specific selection and the maintenance of genetic variation.


Asunto(s)
Aptitud Genética , Genotipo , Reproducción , Salmo salar , Animales , Femenino , Masculino , Salmo salar/genética , Reproducción/genética , Linaje , Proteínas de Peces/genética , Maduración Sexual/genética
2.
J Fish Biol ; 102(5): 1096-1108, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36647775

RESUMEN

The environment experienced by a female influences reproductive traits in many species of fish. Environmental factors such as temperature and diet are not only important mediators of female maturation and reproduction but also of egg traits and offspring fitness through maternal provisioning. In this study, we use 3-year-old tank-reared Atlantic salmon from two Finnish populations to investigate the effect of temperature and diet on maturation and egg traits. We show that a temperature difference of 2°C is sufficient to delay maturation in female Atlantic salmon whereas a 22% reduction in dietary energy content had no effect on maturation. Diet did not influence the body size, condition or fecundity of the mature females or the size or protein content of the eggs. However, a higher energy diet increased egg lipid content. Neither female body size nor condition were associated with egg size or fat/protein composition. Our results indicate that female salmon that have a poorer diet in terms of energy content may have a reproductive disadvantage due to the lower energy provisioning of eggs. This disadvantage has the potential to translate into fitness consequences for their offspring.


Asunto(s)
Salmo salar , Animales , Femenino , Temperatura , Reproducción , Fertilidad , Dieta/veterinaria
3.
Evol Lett ; 4(3): 243-256, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32547784

RESUMEN

Lake-dwelling fish that form species pairs/flocks characterized by body size divergence are important model systems for speciation research. Although several sources of divergent selection have been identified in these systems, their importance for driving the speciation process remains elusive. A major problem is that in retrospect, we cannot distinguish selection pressures that initiated divergence from those acting later in the process. To address this issue, we studied the initial stages of speciation in European whitefish (Coregonus lavaretus) using data from 358 populations of varying age (26-10,000 years). We find that whitefish speciation is driven by a large-growing predator, the northern pike (Esox lucius). Pike initiates divergence by causing a largely plastic differentiation into benthic giants and pelagic dwarfs: ecotypes that will subsequently develop partial reproductive isolation and heritable differences in gill raker number. Using an eco-evolutionary model, we demonstrate how pike's habitat specificity and large gape size are critical for imposing a between-habitat trade-off, causing prey to mature in a safer place or at a safer size. Thereby, we propose a novel mechanism for how predators may cause dwarf/giant speciation in lake-dwelling fish species.

4.
Mol Ecol ; 29(6): 1173-1184, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32077545

RESUMEN

In species with complex life cycles, life history theory predicts that fitness is affected by conditions encountered in previous life history stages. Here, we use a 4-year pedigree to investigate if time spent in two distinct life history stages has sex-specific reproductive fitness consequences in anadromous Atlantic salmon (Salmo salar). We determined the amount of years spent in fresh water as juveniles (freshwater age, FW, measured in years), and years spent in the marine environment as adults (sea age, SW, measured in sea winters) on 264 sexually mature adults collected on a river spawning ground. We then estimated reproductive fitness as the number of offspring (reproductive success) and the number of mates (mating success) using genetic parentage analysis (>5,000 offspring). Sea age is significantly and positively correlated with reproductive and mating success of both sexes whereby older and larger individuals gained the highest reproductive fitness benefits (females: 62.2% increase in offspring/SW and 34.8% increase in mate number/SW; males: 201.9% offspring/SW and 60.3% mates/SW). Younger freshwater age was significantly related to older sea age and thus increased reproductive fitness, but only among females (females: -33.9% offspring/FW and -32.4% mates/FW). This result implies that females can obtain higher reproductive fitness by transitioning to the marine environment earlier. In contrast, male mating and reproductive success was unaffected by freshwater age and more males returned at a younger age than females despite the reproductive fitness advantage of later sea age maturation. Our results show that the timing of transitions between juvenile and adult phases has a sex-specific consequence on female reproductive fitness, demonstrating a life history trade-off between maturation and reproduction in wild Atlantic salmon.


Asunto(s)
Aptitud Genética , Estadios del Ciclo de Vida , Reproducción/genética , Salmo salar/genética , Factores de Edad , Animales , Femenino , Agua Dulce , Masculino , Linaje , Salmo salar/crecimiento & desarrollo , Agua de Mar , Factores de Tiempo
5.
Sci Adv ; 5(2): eaav1112, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30820455

RESUMEN

A long-held, but poorly tested, assumption in natural populations is that individuals that disperse into new areas for reproduction are at a disadvantage compared to individuals that reproduce in their natal habitat, underpinning the eco-evolutionary processes of local adaptation and ecological speciation. Here, we capitalize on fine-scale population structure and natural dispersal events to compare the reproductive success of local and dispersing individuals captured on the same spawning ground in four consecutive parent-offspring cohorts of wild Atlantic salmon (Salmo salar). Parentage analysis conducted on adults and juvenile fish showed that local females and males had 9.6 and 2.9 times higher reproductive success than dispersers, respectively. Our results reveal how higher reproductive success in local spawners compared to dispersers may act in natural populations to drive population divergence and promote local adaptation over microgeographic spatial scales without clear morphological differences between populations.


Asunto(s)
Ecosistema , Aptitud Genética , Reproducción , Salmo salar , Animales , Evolución Biológica , Femenino , Geografía , Masculino , Modelos Teóricos
6.
Ecol Evol ; 8(18): 9516-9525, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30377519

RESUMEN

Sexual ornaments found only in females are a rare occurrence in nature. One explanation for this is that female ornaments are costly to produce and maintain and, therefore, females must trade-off resources related to reproduction to promote ornament expression. Here, we investigate whether a trade-off exists between female ornamentation and fecundity in the sex-role reversed, wide-bodied pipefish, Stigmatopora nigra. We measured two components of the disk-shaped, ventral-striped female ornament, body width, and stripe thickness. After controlling for the influence of body size, we found no evidence of a cost of belly width or stripe thickness on female fecundity. Rather, females that have larger ornaments have higher fecundity and thus accurately advertise their reproductive value to males without incurring a cost to fecundity. We also investigated the relationship between female body size and egg size and found that larger females suffer a slight decrease in egg size and fecundity, although this decrease was independent of female ornamentation. More broadly, considered in light of similar findings in other taxa, lack of an apparent fecundity cost of ornamentation in female pipefish underscores the need to revisit theoretical assumptions concerning the evolution of female ornamentation.

7.
Sci Rep ; 7(1): 15024, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29101375

RESUMEN

Fish populations can be threatened by distorted sex ratios that arise during sex differentiation. Here we describe sex differentiation in a wild grayling (Thymallus thymallus) population that suffers from distorted sex ratios. We verified that sex determination is linked to the sex determining locus (sdY) of salmonids. This allowed us to study sex-specific gene expression and gonadal development. Sex-specific gene expression could be observed during embryogenesis and was strong around hatching. About half of the fish showed immature testes around eleven weeks after fertilization. This phenotype was mostly replaced by the "testis-to-ovary" or "ovaries" phenotypes during development. The gonads of the remaining fish stayed undifferentiated until six months after fertilization. Genetic sexing revealed that fish with undifferentiated gonads were all males, who grew larger than the genetic females during the observational period. Only 12% of the genetic males showed testicular tissue six months after fertilization. We conclude that sex differentiation starts before hatching, goes through an all-male stage for both sexes (which represents a rare case of "undifferentiated" gonochoristic species that usually go through an all-female stage), and is delayed in males. During these juvenile stages males grow faster than females instead of developing their gonads.


Asunto(s)
Ovario/crecimiento & desarrollo , Salmonidae/crecimiento & desarrollo , Diferenciación Sexual/genética , Testículo/crecimiento & desarrollo , Animales , Femenino , Expresión Génica , Masculino , Salmonidae/genética , Razón de Masculinidad
8.
Mol Ecol ; 26(17): 4364-4377, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28626971

RESUMEN

Despite essential progress towards understanding the evolution of cooperative behaviour, we still lack detailed knowledge about its underlying molecular mechanisms, genetic basis, evolutionary dynamics and ontogeny. An international workshop "Genetics and Development of Cooperation," organized by the University of Bern (Switzerland), aimed at discussing the current progress in this research field and suggesting avenues for future research. This review uses the major themes of the meeting as a springboard to synthesize the concepts of genetic and nongenetic inheritance of cooperation, and to review a quantitative genetic framework that allows for the inclusion of indirect genetic effects. Furthermore, we argue that including nongenetic inheritance, such as transgenerational epigenetic effects, parental effects, ecological and cultural inheritance, provides a more nuanced view of the evolution of cooperation. We summarize those genes and molecular pathways in a range of species that seem promising candidates for mechanisms underlying cooperative behaviours. Concerning the neurobiological substrate of cooperation, we suggest three cognitive skills necessary for the ability to cooperate: (i) event memory, (ii) synchrony with others and (iii) responsiveness to others. Taking a closer look at the developmental trajectories that lead to the expression of cooperative behaviours, we discuss the dichotomy between early morphological specialization in social insects and more flexible behavioural specialization in cooperatively breeding vertebrates. Finally, we provide recommendations for which biological systems and species may be particularly suitable, which specific traits and parameters should be measured, what type of approaches should be followed, and which methods should be employed in studies of cooperation to better understand how cooperation evolves and manifests in nature.


Asunto(s)
Evolución Biológica , Conducta Cooperativa , Altruismo , Animales , Conducta Animal , Congresos como Asunto , Biología Evolutiva , Epigénesis Genética , Aptitud Genética , Memoria , Sistemas Neurosecretores/fisiología , Fenotipo , Suiza
9.
Mol Ecol ; 23(14): 3587-99, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24917383

RESUMEN

The strength of sexual selection may vary between species, among populations and within populations over time. While there is growing evidence that sexual selection may vary between years, less is known about variation in sexual selection within a season. Here, we investigate within-season variation in sexual selection in male two-spotted gobies (Gobiusculus flavescens). This marine fish experiences a seasonal change in the operational sex ratio from male- to female-biased, resulting in a dramatic decrease in male mating competition over the breeding season. We therefore expected stronger sexual selection on males early in the season. We sampled nests and nest-holding males early and late in the breeding season and used microsatellite markers to determine male mating and reproductive success. We first analysed sexual selection associated with the acquisition of nests by comparing nest-holding males to population samples. Among nest-holders, we calculated the potential strength of sexual selection and selection on phenotypic traits. We found remarkable within-season variation in sexual selection. Selection on male body size related to nest acquisition changed from positive to negative over the season. The opportunity for sexual selection among nest-holders was significantly greater early in the season rather than late in the season, partly due to more unmated males. Overall, our study documents a within-season change in sexual selection that corresponds with a predictable change in the operational sex ratio. We suggest that many species may experience within-season changes in sexual selection and that such dynamics are important for understanding how sexual selection operates in the wild.


Asunto(s)
Preferencia en el Apareamiento Animal , Perciformes/genética , Estaciones del Año , Razón de Masculinidad , Animales , Cruzamiento , Femenino , Genotipo , Masculino , Repeticiones de Microsatélite , Comportamiento de Nidificación , Perciformes/fisiología , Fenotipo
10.
Ecol Evol ; 4(1): 67-78, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24455162

RESUMEN

Size-assortative mating is a nonrandom association of body size between members of mating pairs and is expected to be common in species with mutual preferences for body size. In this study, we investigated whether there is direct evidence for size-assortative mating in two species of pipefishes, Syngnathus floridae and S. typhle, that share the characteristics of male pregnancy, sex-role reversal, and a polygynandrous mating system. We take advantage of microsatellite-based "genetic-capture" techniques to match wild-caught females with female genotypes reconstructed from broods of pregnant males and use these data to explore patterns of size-assortative mating in these species. We also develop a simulation model to explore how positive, negative, and antagonistic preferences of each sex for body size affect size-assortative mating. Contrary to expectations, we were unable to find any evidence of size-assortative mating in either species at different geographic locations or at different sampling times. Furthermore, two traits that potentially confer a fitness advantage in terms of reproductive success, female mating order and number of eggs transferred per female, do not affect pairing patterns in the wild. Results from model simulations demonstrate that strong mating preferences are unlikely to explain the observed patterns of mating in the studied populations. Our study shows that individual mating preferences, as ascertained by laboratory-based mating trials, can be decoupled from realized patterns of mating in the wild, and therefore, field studies are also necessary to determine actual patterns of mate choice in nature. We conclude that this disconnect between preferences and assortative mating is likely due to ecological constraints and multiple mating that may limit mate choice in natural populations.

11.
Evolution ; 67(11): 3243-57, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24152006

RESUMEN

Understanding how demographic processes influence mating systems is important to decode ecological influences on sexual selection in nature. We manipulated sex ratio and density in experimental populations of the sex-role reversed pipefish Syngnathus typhle. We quantified sexual selection using the Bateman gradient (ßss'), the opportunity for selection (I), and sexual selection (Is), and the maximum standardized sexual selection differential (smax'). We also measured selection on body length using standardized selection differentials (s') and mating differentials (m'), and tested whether the observed I and Is differ from values obtained by simulating random mating. We found that I, Is, and s'max, but not ßss', were higher for females under female than male bias and the opposite for males, but density did not affect these measures. However, higher density decreased sexual selection (m' but not s') on female length, but selection on body length was not affected by sex ratio. Finally, Is but not I was higher than expected from random mating, and only for females under female bias. This study demonstrates that both sex ratio and density affect sexual selection and that disentangling interrelated demographic processes is essential to a more complete understanding of mating behavior and the evolution of mating systems.


Asunto(s)
Preferencia en el Apareamiento Animal , Razón de Masculinidad , Smegmamorpha/fisiología , Animales , Femenino , Masculino , Densidad de Población , Suecia
12.
Evolution ; 67(3): 646-60, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23461316

RESUMEN

The genetic mating system is a key component of the sexual selection process, yet methods for the quantification of mating systems remain controversial. One approach involves metrics derived from Bateman's principles, which are based on variances in mating and reproductive success and the relationship between them. However, these measures are extremely difficult to measure for both sexes in open populations, because missing data can result in biased estimates. Here, we develop a novel approach for the estimation of mating system metrics based on Bateman's principles and apply it to a microsatellite-based parentage analysis of a natural population of the dusky pipefish, Syngnathus floridae. Our results show that both male and female dusky pipefish have significantly positive Bateman gradients. However, females exhibit larger values of the opportunity for sexual selection and the opportunity for selection compared to males. These differences translate into a maximum intensity of sexual selection (S'max) for females three times larger than that for males. Overall, this study identifies a critical source of bias that affects studies of mating systems in open populations, presents a novel method for overcoming this bias, and applies this method for the first time in a sex-role-reversed pipefish.


Asunto(s)
Peces/genética , Preferencia en el Apareamiento Animal , Animales , Femenino , Masculino , Repeticiones de Microsatélite , Selección Genética , Caracteres Sexuales
13.
BMC Evol Biol ; 11: 287, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21970590

RESUMEN

BACKGROUND: An important objective of evolutionary biology is to understand the processes that govern phenotypic variation in natural populations. We assessed patterns of morphological and genetic divergence among coastal and inland lake populations of nine-spined stickleback in northern Sweden. Coastal populations are either from the Baltic coast (n = 5) or from nearby coastal lakes (n = 3) that became isolated from the Baltic Sea (< 100 years before present, ybp). Inland populations are from freshwater lakes that became isolated from the Baltic approximately 10,000 ybp; either single species lakes without predators (n = 5), or lakes with a recent history of predation (n = 5) from stocking of salmonid predators (~50 ybp). RESULTS: Coastal populations showed little variation in 11 morphological traits and had longer spines per unit of body length than inland populations. Inland populations were larger, on average, and showed greater morphological variation than coastal populations. A principal component analysis (PCA) across all populations revealed two major morphological axes related to spine length (PC1, 47.7% variation) and body size (PC2, 32.9% variation). Analysis of PCA scores showed marked similarity in coastal (Baltic coast and coastal lake) populations. PCA scores indicate that inland populations with predators have higher within-group variance in spine length and lower within-group variance in body size than inland populations without predators. Estimates of within-group PST (a proxy for QST) from PCA scores are similar to estimates of FST for coastal lake populations but PST >FST for Baltic coast populations. PST >FST for PC1 and PC2 for inland predator and inland no predator populations, with the exception that PST

Asunto(s)
Ecosistema , Evolución Molecular , Variación Genética , Smegmamorpha/anatomía & histología , Smegmamorpha/genética , Animales , Tamaño Corporal , Pesos y Medidas Corporales , Análisis por Conglomerados , Repeticiones de Microsatélite/genética , Filogenia , Análisis de Componente Principal , Suecia
14.
Mol Ecol ; 20(6): 1080-2, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21495272

RESUMEN

The advent of DNA fingerprinting and microsatellite techniques has revolutionized the way in which we investigate genetic pedigrees in the wild (Pemberton 2008). With large and often incomplete data sets consisting of hundreds to thousands of individuals over multiple generations becoming commonplace, new methods in parentage analysis are being developed to rise to the next generation of questions and challenges. In this issue, Christie et al. (2011) provide a simple yet elegant solution to the problem of identifying missing parents and assessing hybrid fitness in a mixed population of wild and hatchery steelhead trout (Oncorhynchus mykiss) where not all individuals can be sampled effectively. They develop a new method of grandparent analysis where parental genotypes can be reconstructed using data from candidate grandparent crosses and F2 offspring genotypes, allowing for new explorations of hybridization, migration and gene flow in wild populations.


Asunto(s)
Genética de Población/métodos , Animales , Ecología , Flujo Génico/genética , Repeticiones de Microsatélite/genética , Oncorhynchus mykiss/genética
15.
Proc Biol Sci ; 277(1687): 1581-7, 2010 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-20106851

RESUMEN

The differential allocation hypothesis assumes that animals should weigh costs and benefits of investing into reproduction with a current mate against the expected quality of future mates, and predicts that they should invest more into reproduction when pairing with a high-quality mate. In the broad-nosed pipefish (Syngnathus typhle), males care for the embryos in a brood pouch and females compete for access to male mating partners. Both sexes prefer mating with large partners. In the present study, we show that the same female provides both large and small mating partners with eggs of similar size, weight and lipid content when mated to two males in succession. Importantly, however, eggs provided to small males (less preferred) had higher egg protein content (11% more) than those provided to large males (preferred). Thus, contrary to the differential allocation hypothesis, eggs did not contain more resources when females mated with a larger male. Instead, the pattern observed in our results is consistent with a compensatory reproductive strategy.


Asunto(s)
Peces/fisiología , Preferencia en el Apareamiento Animal/fisiología , Reproducción/fisiología , Conducta Sexual Animal/fisiología , Animales , Proteínas del Huevo/análisis , Proteínas del Huevo/metabolismo , Femenino , Peces/clasificación , Masculino , Óvulo/química , Óvulo/metabolismo
16.
Proc Biol Sci ; 277(1683): 971-7, 2010 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-19939847

RESUMEN

It is well known that many animals with placenta-like structures provide their embryos with nutrients and oxygen. However, we demonstrate here that nutrients can pass the other way, from embryos to the parent. The study was done on a pipefish, Syngnathus typhle, in which males brood fertilized eggs in a brood pouch for several weeks. Earlier research has found a reduction of embryo numbers during the brooding period, but the fate of the nutrients from these 'reduced' embryos has been unknown. In this study, we considered whether (i) the brooding male absorbs the nutrients, (ii) siblings absorb them, or (iii) a combination of both. Males were mated to two sets of females, one of which had radioactively labelled eggs (using (14)C-labelled amino acids), such that approximately half the eggs in the brood pouch were labelled. This allowed us to trace nutrient uptake from these embryos. We detected that (14)C-labelled amino acids were transferred to the male brood pouch, liver and muscle tissue. However, we did not detect any significant (14)C-labelled amino-acid absorption by the non-labelled half-siblings in the brood pouch. Thus, we show, to our knowledge, for the first time, that males absorb nutrients derived from embryos through their paternal brood pouch.


Asunto(s)
Desarrollo Embrionario/fisiología , Smegmamorpha/fisiología , Animales , Radioisótopos de Carbono/análisis , Femenino , Masculino , Conducta Paterna , Conteo por Cintilación , Smegmamorpha/embriología
17.
Mol Ecol ; 18(7): 1476-90, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19368649

RESUMEN

Genetic mating systems are expected to vary among and within populations in response to environmental and demographic factors. Despite the fact that mating system variation theoretically can have profound effects on important evolutionary processes such as sexual selection, extensive intraspecific surveys of geographical variation in mating systems are rare. We used microsatellite markers to characterize genetic mating systems of dusky pipefish, Syngnathus floridae, from five populations distributed from the mid-Atlantic Coast to the Western Gulf of Mexico. We also measured a number of environmental and demographic variables to examine correlations between the ecological setting and mating behaviour. Our results show that dusky pipefish are polygynandrous throughout their USA distribution, but they exhibit a wide range of quantitative variation in male mating behaviour. In addition, these five populations varied substantially with respect to environmental and demographic variables, and some of these were significantly correlated with aspects of the genetic mating system. While causal relationships cannot be firmly diagnosed from this type of comparative study, our results do identify several ecological factors, such as water temperature, adult sex ratio, and seagrass biomass, which should be considered in future experimental and comparative work. Overall, this study confirms the expectation that geographical variation in mating systems is widespread and shows that the dusky pipefish is an excellent model for continued research into the factors affecting mating systems in nature.


Asunto(s)
Genética de Población , Preferencia en el Apareamiento Animal , Reproducción/genética , Smegmamorpha/genética , Animales , Ambiente , Femenino , Variación Genética , Geografía , Masculino , Repeticiones de Microsatélite , Dinámica Poblacional
18.
BMC Evol Biol ; 9: 6, 2009 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19133131

RESUMEN

BACKGROUND: A major question in behavioural ecology concerns the relationship between genetic mating systems and the strength of sexual selection. In this study, we investigated the genetic mating system of the two-spotted goby (Gobiusculus flavescens), a useful fish model for the study of sexual selection whose genetic mating system remains uncharacterized. We developed four polymorphic microsatellite markers and used them to conduct parentage analyses on 21 nests collected during the breeding season to examine the rates of multiple mating by males and to test for evidence of alternative mating strategies. RESULTS: Results of this study indicate that male G. flavescens mate with multiple females and enjoy confidence of paternity. We detected only one instance of sneaking, so cuckoldry contributed a very small percentage (approximately 0.1%) of the total fertilizations in this population. Nests were nearly full and males that maintain larger nests have higher mating and reproductive success, irrespective of body size. CONCLUSION: Overall, our investigation shows that G. flavescens is similar to other, related gobies in that the nests of care-giving males often contain eggs from multiple females. However, G. flavescens differs from other gobies in displaying an extremely low rate of cuckoldry. The study of ecological factors responsible for this important difference between G. flavescens and related species should be a fertile area for future work.


Asunto(s)
Comportamiento de Nidificación , Perciformes/fisiología , Conducta Sexual Animal , Animales , Tamaño Corporal , Femenino , Masculino , Perciformes/genética
19.
Evolution ; 60(2): 404-10, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16610331

RESUMEN

The evolution of complex traits, which are specified by the interplay of multiple genetic loci and environmental effects, is a topic of central importance in evolutionary biology. Here, we show that body and tail vertebral numbers in fishes of the pipefish and seahorse family (Syngnathidae) can serve as a model for studies of quantitative trait evolution. A quantitative genetic analysis of body and tail vertebrae from field-collected families of the Gulf pipefish, Syngnathus scovelli, shows that both traits exhibit significantly positive additive genetic variance, with heritabilities of 0.75 +/- 0.13 (mean +/- standard error) and 0.46 +/- 0.18, respectively. We do not find any evidence for either phenotypic or genetic correlations between the two traits. Pipefish are characterized by male pregnancy, and phylogenetic consideration of body proportions suggests that the position of eggs on the pregnant male's body may have contributed to the evolution of vertebral counts. In terms of numbers of vertebrae, tail-brooding males have longer tails for a given trunk size than do trunk-brooding males. Overall, these results suggest that vertebral counts in pipefish are heritable traits, capable of a response to selection, and they may have experienced an interesting history of selection due to the phenomenon of male pregnancy. Given that these traits vary among populations within species as well as among species, they appear to provide an excellent model for further research on complex trait evolution. Body segmentation may thus afford excellent opportunities for comparative study of homologous complex traits among disparate vertebrate taxa.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo/fisiología , Caracteres Sexuales , Smegmamorpha/anatomía & histología , Smegmamorpha/fisiología , Animales , Masculino , Filogenia , Reproducción/fisiología , Smegmamorpha/embriología , Cola (estructura animal)/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...