Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Artículo en Inglés | MEDLINE | ID: mdl-30980840

RESUMEN

S 47445 is a positive allosteric modulator of glutamate AMPA-type receptors that possesses procognitive, neurotrophic and enhancing synaptic plasticity properties. Its chronic administration promotes antidepressant- and anxiolytic-like effects in different rodent models of depression. We have evaluated the behavioral effects of S 47445 in the bilateral olfactory bulbectomy mice model (OB) and the adaptive changes in those proteins associated to brain neuroplasticity (BDNF and mTOR pathway). Following OB surgery, adult C57BL/6J male mice were chronically administered S 47445 (1, 3 and 10 mg/kg/day; i.p.) and fluoxetine (18 mg/kg/day; i.p.), and then behaviorally tested in the open field test. Afterwards, the expression levels of BDNF, mTOR, phospho-mTOR, 4EBP1 and phospho-4EBP1 were evaluated in hippocampus and prefrontal cortex. Both drugs reduced the OB-induced locomotor activity, a predictive outcome of antidepressant efficacy, with a similar temporal pattern of action. S 47445, but not fluoxetine, showed an anxiolytic effect as reflected by an increased central activity. Chronic administration of S 47445 reversed OB-induced changes in BDNF and phopho-mTOR expression in hippocampus but not in prefrontal cortex. The chronic administration of S 47445 induced antidepressant- and anxiolytic-like effects at low-medium doses (1 and 3 mg/kg/day, i.p.) associated with the reversal of OB-induced changes in hippocampal BDNF and mTOR signaling pathways.


Asunto(s)
Ansiolíticos/farmacología , Antidepresivos/farmacología , Benzoxazinas/farmacología , Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Bulbo Olfatorio/cirugía , Triazinas/farmacología , Animales , Antidepresivos de Segunda Generación/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fluoxetina/farmacología , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Bulbo Olfatorio/fisiología , Receptores AMPA/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
3.
Neuropharmacology ; 144: 244-255, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30359639

RESUMEN

The histamine H3 receptor is a G protein-coupled receptor (GPCR) drug target that is highly expressed in the CNS, where it acts as both an auto- and hetero-receptor to regulate neurotransmission. As such, it has been considered as a relevant target in disorders as varied as Alzheimer's disease, schizophrenia, neuropathic pain and attention deficit hyperactivity disorder. A range of competitive antagonists/inverse agonists have progressed into clinical development, with pitolisant approved for the treatment of narcolepsy. Given the breadth of compounds developed and potential therapeutic indications, we assessed the comparative pharmacology of six investigational histamine H3 agents, including pitolisant, using native tissue and recombinant cells. Whilst all of the compounds tested displayed robust histamine H3 receptor inverse agonism and did not differentiate between the main H3 receptor splice variants, they displayed a wide range of affinities and kinetic properties, and included rapidly dissociating (pitolisant, S 38093-2, ABT-239) and slowly dissociating (GSK189254, JNJ-5207852, PF-3654746) agents. S 38093-2 had the lowest histamine H3 receptor affinity (pKB values 5.7-6.2), seemingly at odds with previously reported, potent in vivo activity in models of cognition. We show here that at pro-cognitive and anti-hyperalgesic/anti-allodynic doses, S 38093-2 preferentially occupies the mouse sigma-1 receptor in vivo, only engaging the histamine H3 receptor at doses associated with wakefulness promotion and neurotransmitter (histamine, ACh) release. Furthermore, pitolisant, ABT-239 and PF-3654746 also displayed appreciable sigma-1 receptor affinity, suggesting that this property differentiates clinically evaluated histamine H3 receptor antagonists and may play a role in their efficacy.


Asunto(s)
Antagonistas de los Receptores Histamínicos H3/farmacocinética , Receptores Histamínicos H3/metabolismo , Receptores sigma/metabolismo , Animales , Animales no Consanguíneos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células CHO , Cricetulus , Cobayas , Antagonistas de los Receptores Histamínicos H3/química , Antagonistas de los Receptores Histamínicos H3/farmacología , Masculino , Ratones , Isoformas de Proteínas , Ratas Wistar , Receptores Histamínicos H3/genética , Conducto Deferente/efectos de los fármacos , Conducto Deferente/metabolismo , Receptor Sigma-1
4.
Front Pharmacol ; 9: 587, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29930510

RESUMEN

Previous data showed that neuropathic pain induced by mechanical lesion of peripheral nerves has specific characteristics and responds differently to alleviating drugs at cephalic versus extracephalic level. This is especially true for tricyclic antidepressants currently used for alleviating neuropathic pain in humans which are less effective against cephalic neuropathic pain. Whether this also applies to the antidepressant agomelatine, with its unique pharmacological properties as MT1/MT2 melatonin receptor agonist and 5-HT2B/5-HT2C serotonin receptor antagonist, has been investigated in two rat models of neuropathic pain. Acute treatments were performed 2 weeks after unilateral chronic constriction (ligation) injury to the sciatic nerve (CCI-SN) or the infraorbital nerve (CCI-ION), when maximal mechanical allodynia had developed in ipsilateral hindpaw or vibrissal pad, respectively, in Sprague-Dawley male rats. Although agomelatine (45 mg/kg i.p.) alone was inactive, co-treatment with gabapentin, at an essentially ineffective dose (50 mg/kg i.p.) on its own, produced marked anti-allodynic effects, especially in CCI-ION rats. In both CCI-SN and CCI-ION models, suppression of mechanical allodynia by 'agomelatine + gabapentin' could be partially mimicked by the combination of 5-HT2C antagonist (SB 242084) + gabapentin, but not by melatonin or 5-HT2B antagonist (RS 127445, LY 266097), alone or combined with gabapentin. In contrast, pretreatment by idazoxan, propranolol or the ß2 antagonist ICI 118551 markedly inhibited the anti-allodynic effect of 'agomelatine + gabapentin' in both CCI-SN and CCI-ION rats, whereas pretreatment by the MT1/MT2 receptor antagonist S22153 was inactive. Altogether these data indicate that 'agomelatine + gabapentin' is a potent anti-allodynic combination at both cephalic and extra-cephalic levels, whose action implicates α2- and ß2-adrenoreceptor-mediated noradrenergic neurotransmission.

5.
Front Pharmacol ; 8: 462, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769796

RESUMEN

Glutamatergic dysfunctions are observed in the pathophysiology of depression. The glutamatergic synapse as well as the AMPA receptor's (AMPAR) activation may represent new potential targets for therapeutic intervention in the context of major depressive disorders. S 47445 is a novel AMPARs positive allosteric modulator (AMPA-PAM) possessing procognitive, neurotrophic properties and enhancing synaptic plasticity. Here, we investigated the antidepressant/anxiolytic-like effects of S 47445 in a mouse model of anxiety/depression based on chronic corticosterone administration (CORT) and in the Chronic Mild Stress (CMS) model in rats. Four doses of S 47445 (0.3 to 10 mg/kg, oral route, 4 and 5 weeks, respectively) were assessed in both models. In mouse, behavioral effects were tested in various anxiety-and depression-related behaviors : the elevated plus maze (EPM), open field (OF), splash test (ST), forced swim test (FST), tail suspension test (TST), fur coat state and novelty suppressed feeding (NSF) as well as on hippocampal neurogenesis and dendritic arborization in comparison to chronic fluoxetine treatment (18 mg/kg, p.o.). In rats, behavioral effects of S 47445 were monitored using sucrose consumption and compared to those of imipramine or venlafaxine (10 mg/kg, i.p.) during the whole treatment period and after withdrawal of treatments. In a mouse model of genetic ablation of hippocampal neurogenesis (GFAP-Tk model), neurogenesis dependent/independent effects of chronic S 47445 treatment were tested, as well as BDNF hippocampal expression. S 47445 reversed CORT-induced depressive-like state by increasing grooming duration and reversing coat state's deterioration. S 47445 also decreased the immobility duration in TST and FST. The highest doses (3 and 10 mg/kg) seem the most effective for antidepressant-like activity in CORT mice. Furthermore, S 47445 significantly reversed the anxiety phenotype observed in OF (at 1 mg/kg) and EPM (from 1 mg/kg). In the CMS rat model, S 47445 (from 1 mg/kg) demonstrated a rapid onset of effect on anhedonia compared to venlafaxine and imipramine. In the CORT model, S 47445 demonstrated significant neurogenic effects on proliferation, survival and maturation of hippocampal newborn neurons at doses inducing an antidepressant-like effect. It also corrected CORT-induced deficits of growth and arborization of dendrites. Finally, the antidepressant/anxiolytic-like activities of S 47445 required adult hippocampal neurogenesis in the novelty suppressed feeding test contrary to OF, EPM and ST. The observed increase in hippocampal BDNF levels could be one of the mechanisms of S 47445 responsible for the adult hippocampal neurogenesis increase. Altogether, S 47445 displays robust antidepressant-anxiolytic-like properties after chronic administration through neurogenesis dependent/independent mechanisms and neuroplastic activities. The AMPA-PAM S 47445 could have promising therapeutic potential for the treatment of major depressive disorders or generalized anxiety disorders.

6.
Alzheimers Res Ther ; 9(1): 54, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28750690

RESUMEN

BACKGROUND: The apolipoprotein E ε4 (APOE4) genotype is a prominent late-onset Alzheimer's disease (AD) risk factor. ApoE4 disrupts memory function in rodents and may contribute to both plaque and tangle formation. METHODS: Coimmunoprecipitation and Western blot detection were used to determine: 1) the effects of select fragments from the apoE low-density lipoprotein (LDL) binding domain and recombinant apoE subtypes on amyloid beta (Aß)42-α7 nicotinic acetylcholine receptor (α7nAChR) interaction and tau phosphorylation in rodent brain synaptosomes; and 2) the level of Aß42-α7nAChR complexes in matched controls and patients with mild cognitive impairment (MCI) and dementia due to AD with known APOE genotypes. RESULTS: In an ex vivo study using rodent synaptosomes, apoE141-148 of the apoE promotes Aß42-α7nAChR association and Aß42-induced α7nAChR-dependent tau phosphorylation. In a single-blind study, we examined lymphocytes isolated from control subjects, patients with MCI and dementia due to AD with known APOE genotypes, sampled at two time points (1 year apart). APOE ε4 genotype was closely correlated with heightened Aß42-α7nAChR complex levels and with blunted exogenous Aß42 effects in lymphocytes derived from AD and MCI due to AD cases. Similarly, plasma from APOE ε4 carriers enhanced the Aß42-induced Aß42-α7nAChR association in rat cortical synaptosomes. The progression of cognitive decline in APOE ε4 carriers correlated with higher levels of Aß42-α7nAChR complexes in lymphocytes and greater enhancement by their plasma of Aß42-induced Aß42-α7nAChR association in rat cortical synaptosomes. CONCLUSIONS: Our data suggest that increased lymphocyte Aß42-α7nAChR-like complexes may indicate the presence of AD pathology especially in APOE ε4 carriers. We show that apoE, especially apoE4, promotes Aß42-α7nAChR interaction and Aß42-induced α7nAChR-dependent tau phosphorylation via its apoE141-148 domain. These apoE-mediated effects may contribute to the APOE ε4-driven neurodysfunction and AD pathologies.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Linfocitos/metabolismo , Fragmentos de Péptidos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/farmacología , Animales , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Relación Dosis-Respuesta a Droga , Femenino , Lóbulo Frontal/ultraestructura , Humanos , Linfocitos/efectos de los fármacos , Masculino , Fragmentos de Péptidos/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de LDL/metabolismo , Estadística como Asunto , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura , Proteínas tau/metabolismo
7.
Pharmacol Res ; 121: 59-69, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28442348

RESUMEN

At molecular levels, it has been shown that aging is associated with alterations in neuroplastic mechanisms. In this study, it was examined if the altered expression of neurotrophins observed in aged rats could be corrected by a chronic treatment with S 47445 (1-3-10mg/kg, p.o.), a novel selective positive allosteric modulator of the AMPA receptors. Both the mRNA and the protein levels of the neurotrophins Bdnf, NT-3 and Ngf were specifically measured in the prefrontal cortex and hippocampus (ventral and dorsal) of aged rats. It was found that 2-week-treatment with S 47445 corrected the age-related deficits of these neurotrophins and/or positively modulated their expression in comparison to vehicle aged rats in the range of procognitive and antidepressant active doses in rodents. Collectively, the ability of S 47445 to modulate various neurotrophins demonstrated its neurotrophic properties in two major brain structures involved in cognition and mood regulation suggesting its therapeutic potential for improving several diseases such as Alzheimer's disease and/or Major Depressive Disorders.


Asunto(s)
Benzoxazinas/farmacología , Hipocampo/efectos de los fármacos , Factores de Crecimiento Nervioso/genética , Corteza Prefrontal/efectos de los fármacos , Receptores AMPA/metabolismo , Triazinas/farmacología , Regulación hacia Arriba/efectos de los fármacos , Envejecimiento , Regulación Alostérica/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/análisis , Factor Neurotrófico Derivado del Encéfalo/genética , Hipocampo/metabolismo , Masculino , Factor de Crecimiento Nervioso/análisis , Factor de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/análisis , Neurotrofina 3/análisis , Neurotrofina 3/genética , Corteza Prefrontal/metabolismo , ARN Mensajero/genética , Ratas , Ratas Wistar
8.
Sci Rep ; 8: 45907, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28374847

RESUMEN

Chronic stress is known to induce not only anxiety and depressive-like phenotypes in mice but also cognitive impairments, for which the action of classical antidepressant compounds remains unsatisfactory. In this context, we investigated the effects of chronic social defeat stress (CSDS) on anxiety-, social- and cognitive-related behaviors, as well as hippocampal Bdnf, synaptic plasticity markers (PSD-95, Synaptophysin, Spinophilin, Synapsin I and MAP-2), and epigenetic modifying enzymes (MYST2, HDAC2, HDAC6, MLL3, KDM5B, DNMT3B, GADD45B) gene expression in C57BL/6J mice. CSDS for 10 days provoked long-lasting anxious-like phenotype in the open field and episodic memory deficits in the novel object recognition test. While total Bdnf mRNA level was unchanged, Bdnf exon IV, MAP-2, HDAC2, HDAC6 and MLL3 gene expression was significantly decreased in the CSDS mouse hippocampus. In CSDS mice treated 3 weeks with 50 mg/kg/d agomelatine, an antidepressant with melatonergic receptor agonist and 5-HT2C receptor antagonist properties, the anxious-like phenotype was not reversed, but the treatment successfully prevented the cognitive impairments and hippocampal gene expression modifications. Altogether, these data evidenced that, in mice, agomelatine was effective in alleviating stress-induced altered cognitive functions, possibly through a mechanism involving BDNF signaling, synaptic plasticity and epigenetic remodeling.


Asunto(s)
Acetamidas/administración & dosificación , Disfunción Cognitiva/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Estrés Psicológico/tratamiento farmacológico , Animales , Antidepresivos/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/genética , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/genética , Trastorno Depresivo/patología , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Ratones , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Estrés Psicológico/genética , Estrés Psicológico/patología , Sinapsinas/genética , Sinaptofisina/genética
9.
Sci Rep ; 7: 42946, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28218311

RESUMEN

Strategies designed to increase adult hippocampal neurogenesis (AHN) may have therapeutic potential for reversing memory impairments. H3 receptor antagonists/inverse agonists also may be useful for treating cognitive deficits. However, it remains unclear whether these ligands have effects on AHN. The present study aimed to investigate the effects of a 28-day treatment with S 38093, a novel brain-penetrant antagonist/inverse agonist of H3 receptors, on AHN (proliferation, maturation and survival) in 3-month-old and in aged 16-month-old mice. In addition, the effects of S 38093 treatment on 7-month-old APPSWE Tg2576 transgenic mice, a model of Alzheimer's disease, were also assessed. In all tested models, chronic treatment with S 38093 stimulated all steps of AHN. In aged animals, S 38093 induced a reversal of age-dependent effects on hippocampal brain-derived neurotrophic factor (BDNF) BDNF-IX, BDNF-IV and BDNF-I transcripts and increased vascular endothelial growth factor (VEGF) expression. Finally, the effects of chronic administration of S 38093 were assessed on a neurogenesis-dependent "context discrimination (CS) test" in aged mice. While ageing altered mouse CS, chronic S 38093 treatment significantly improved CS. Taken together, these results provide evidence that chronic S 38093 treatment increases adult hippocampal neurogenesis and may provide an innovative strategy to improve age-associated cognitive deficits.


Asunto(s)
Envejecimiento , Compuestos de Azabiciclo/farmacología , Conducta Animal/efectos de los fármacos , Benzamidas/farmacología , Antagonistas de los Receptores Histamínicos H3/farmacología , Neurogénesis/efectos de los fármacos , Enfermedad de Alzheimer/patología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proliferación Celular/efectos de los fármacos , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Agonismo Inverso de Drogas , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Pain ; 158(1): 149-160, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27984527

RESUMEN

Antidepressants are first-line treatments of neuropathic pain but not all these drugs are really effective. Agomelatine is an antidepressant with a novel mode of action, acting as an MT1/MT2 melatonergic receptor agonist and a 5-HT2C receptor antagonist that involves indirect norepinephrine release. Melatonin, serotonin, and norepinephrine have been involved in the pathophysiology of neuropathic pain. Yet, no study has been conducted to determine agomelatine effects on neuropathic pain in animal models. Using 3 rat models of neuropathic pain of toxic (oxaliplatin/OXA), metabolic (streptozocin/STZ), and traumatic (sciatic nerve ligation/CCI [chronic constriction nerve injury]) etiologies, we investigated the antihypersensitivity effect of acute and repeated agomelatine administration. We then determined the influence of melatonergic, 5-HT2C, α-2 and ß-1/2 adrenergic receptor antagonists in the antihypersensitivity effect of agomelatine. The effect of the combination of agomelatine + gabapentin was evaluated using an isobolographic approach. In STZ and CCI models, single doses of agomelatine significantly and dose dependently reduced mechanical hypersensitivity. After daily administrations for 2 weeks, this effect was confirmed in the CCI model and agomelatine also displayed a marked antihypersensitivity effect in the OXA model. The antihypersensitivity effect of agomelatine involved melatonergic, 5-HT2C, and α-2 adrenergic receptors but not beta adrenoceptors. The isobolographic analysis demonstrated that the combination of agomelatine + gabapentin had additive effects. Agomelatine exerts a clear-cut antihypersensitivity effect in 3 different neuropathic pain models. Its effect is mediated by melatonergic and 5-HT2C receptors and, although agomelatine has no affinity, also by α-2 adrenergic receptors. Finally, agomelatine combined with gabapentin produces an additive antihypersensitivity effect.


Asunto(s)
Acetamidas/uso terapéutico , Hipnóticos y Sedantes/uso terapéutico , Neuralgia/tratamiento farmacológico , Antagonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Aminas/uso terapéutico , Animales , Antineoplásicos/toxicidad , Constricción Patológica/complicaciones , Ácidos Ciclohexanocarboxílicos/uso terapéutico , Diabetes Mellitus Experimental/complicaciones , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Gabapentina , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Idazoxan/uso terapéutico , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Neuralgia/etiología , Compuestos Organoplatinos/toxicidad , Oxaliplatino , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Tiofenos/uso terapéutico , Ácido gamma-Aminobutírico/uso terapéutico
11.
Mol Pharmacol ; 91(2): 87-99, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27864425

RESUMEN

The human histamine H3 receptor (hH3R) is subject to extensive gene splicing that gives rise to a large number of functional and nonfunctional isoforms. Despite the general acceptance that G protein-coupled receptors can adopt different ligand-induced conformations that give rise to biased signaling, this has not been studied for the H3R; further, it is unknown whether splice variants of the same receptor engender the same or differential biased signaling. Herein, we profiled the pharmacology of histamine receptor agonists at the two most abundant hH3R splice variants (hH3R445 and hH3R365) across seven signaling endpoints. Both isoforms engender biased signaling, notably for 4-[3-(benzyloxy)propyl]-1H-imidazole (proxyfan) [e.g., strong bias toward phosphorylation of glycogen synthase kinase 3ß (GSK3ß) via the full-length receptor] and its congener 3-(1H-imidazol-4-yl)propyl-(4-iodophenyl)-methyl ether (iodoproxyfan), which are strongly consistent with the former's designation as a "protean" agonist. The 80 amino acid IL3 deleted isoform hH3R365 is more permissive in its signaling than hH3R445: 2-(1H-imidazol-5-yl)ethyl imidothiocarbamate (imetit), proxyfan, and iodoproxyfan were all markedly biased away from calcium signaling, and principal component analysis of the full data set revealed divergent profiles for all five agonists. However, most interesting was the identification of differential biased signaling between the two isoforms. Strikingly, hH3R365 was completely unable to stimulate GSK3ß phosphorylation, an endpoint robustly activated by the full-length receptor. To the best of our knowledge, this is the first quantitative example of differential biased signaling via isoforms of the same G protein-coupled receptor that are simultaneously expressed in vivo and gives rise to the possibility of selective pharmacological targeting of individual receptor splice variants.


Asunto(s)
Agonistas de los Receptores Histamínicos/farmacología , Receptores Histamínicos H3/metabolismo , Animales , Bioensayo , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Agonistas de los Receptores Histamínicos/química , Humanos , Análisis de Componente Principal , Isoformas de Proteínas/metabolismo , Eliminación de Secuencia
12.
Life Sci ; 155: 147-54, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27269050

RESUMEN

AIMS: The hypothalamic suprachiasmatic nucleus (SCN), which functions as a circadian pacemaker in mammals, is influenced by melatonin and serotonin. Agomelatine, which acts as an antidepressant and can synchronize disturbed circadian rhythms, displays a unique mechanism of action involving both melatonergic agonist and 5-HT2C antagonist properties. This study investigated the dose-dependent effects of agomelatine, melatonin and a selective 5-HT2C receptor antagonist, S32006, on SCN neurons in an in vitro slice preparation. MAIN METHODS: Brain slices containing the SCN were prepared from male Wistar rats and maintained in a recording chamber. Changes in firing rates of SCN neurons were recorded after perfusion of drugs. KEY FINDINGS: SCN firing rates were dose-dependently suppressed by 19.2-80.9% following perfusion of 0.04-0.32mM agomelatine (p<0.001, IC50=0.14mM). Perfusion with melatonin (0.4-3.2mM) resulted in 16.6-62.5% dose-dependent reductions in firing rates (at least p<0.01, IC50=1.59mM) and of the duration of suppression. A selective melatonin receptor antagonist (S22153 at 0.32mM) and a 5-HT2c receptor agonist (Ro60-0175) reduced the suppressive effects of 0.16mM agomelatine by 35% and 50.2%, respectively. A 5-HT2C receptor antagonist (S32006; 0.03-0.12mM) significantly decreased SCN firing rates (19.6-91.8%; at least p<0.05, IC50=0.05mM). Co-perfusion of S32006 (0.06mM) with a 5-HT2C agonist (Ro60-0175; 0.003mM) reduced suppressions evoked by S32006 alone by ~72.1%. SIGNIFICANCE: These results are consistent with the hypothesis that agomelatine acts directly on the SCN via both agonist effects at melatonergic receptors and antagonist effects at 5-HT2C receptors, which parallel its mechanisms of action as an antidepressant.


Asunto(s)
Acetamidas/farmacología , Neuronas/efectos de los fármacos , Receptores de Melatonina/metabolismo , Receptores de Serotonina/metabolismo , Núcleo Supraquiasmático/efectos de los fármacos , Potenciales de Acción , Animales , Masculino , Neuronas/fisiología , Ratas , Ratas Wistar , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/metabolismo
13.
Front Pharmacol ; 7: 492, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066242

RESUMEN

Donepezil, an acetylcholinesterase inhibitor, induces only moderate symptomatic effects on memory in Alzheimer's disease patients. An alternative strategy for treatment of cognitive symptoms could be to act simultaneously on both histaminergic and cholinergic pathways, to create a synergistic effect. To that aim, 14 month old C57/Bl6 mice were administered per oesophagy during nine consecutive days with Donepezil (at 0.1 and 0.3 mg/kg) and S 38093 (at 0.1, 0.3, and 1.0 mg/kg), a H3 histaminergic antagonist developed by Servier, alone or in combination and tested for memory in a contextual memory task that modelized the age-induced memory dysfunction. The present study shows that the combination of Donepezil and S 38093 induced a dose-dependent synergistic memory-enhancing effect in middle-aged mice with a statistically higher size of effect never obtained with compounds alone and without any pharmacokinetic interaction between both compounds. We demonstrated that the memory-enhancing effect of the S 38093 and Donepezil combination is mediated by its action on the septo-hippocampal circuitry, since it canceled out the reduction of CREB phosphorylation (pCREB) observed in these brain areas in vehicle-treated middle-aged animals. Overall, the effects of drug combinations on pCREB in the hippocampus indicate that the synergistic promnesiant effects of the combination on memory performance in middle-aged mice stem primarily from an enhancement of neural activity in the septo-hippocampal system.

14.
J Cardiovasc Pharmacol ; 64(5): 440-51, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24977347

RESUMEN

: The effects of the antidepressant agomelatine up to a supratherapeutic dose (400 mg, single dose) on the QT corrected (QTc) interval were assessed in a randomized, double-blind, placebo- and positive-controlled, crossover thorough QT/QTc study in young healthy volunteers (29 males and 31 females). The primary criterion was the study of male or female population-derived QT-corrected interval (QTcP). The main analysis on the QTcP demonstrated that among the 10 postdose measurement times planned, the largest 1-sided 95% confidence interval upper bound of the difference between agomelatine 50 mg and placebo-adjusted means, and 1 of the differences between agomelatine 400 mg and placebo-adjusted means were both strictly inferior to the 10 millisecond upper-bound threshold of regulatory concern. The assay sensitivity was established with the positive control moxifloxacin (400 mg) and detected an effect on the mean QTcP interval that is around the threshold of regulatory concern (5 milliseconds). No relationship between QTcP and plasma concentrations of agomelatine was observed. In conclusion, agomelatine up to 400 mg has no effect on the QTc interval as demonstrated in the present regulatory thorough QT/QTc study.


Asunto(s)
Acetamidas/efectos adversos , Antidepresivos/efectos adversos , Fluoroquinolonas/efectos adversos , Acetamidas/administración & dosificación , Acetamidas/farmacocinética , Adolescente , Adulto , Antidepresivos/administración & dosificación , Antidepresivos/farmacocinética , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Electrocardiografía , Femenino , Humanos , Síndrome de QT Prolongado , Masculino , Moxifloxacino , Adulto Joven
15.
J Neurosci ; 34(6): 2015-24, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24501344

RESUMEN

Abnormalities of synaptic transmission in the hippocampus represent an integral part of the altered programming triggered by early life stress, which enhances the vulnerability to stress-related disorders in the adult life. Rats exposed to prenatal restraint stress (PRS) develop enduring biochemical and behavioral changes characteristic of an anxious/depressive-like phenotype. Most neurochemical abnormalities in PRS rats are found in the ventral hippocampus, a region that encodes memories related to stress and emotions. We have recently demonstrated a causal link between the reduction of glutamate release in the ventral hippocampus and anxiety-like behavior in PRS rats. To confer pharmacological validity to the glutamatergic hypothesis of stress-related disorders, we examined whether chronic treatment with two antidepressants with different mechanisms of action could correct the defect in glutamate release and associated behavioral abnormalities in PRS rats. Adult unstressed or PRS rats were treated daily with either agomelatine (40 mg/kg, i.p.) or fluoxetine (5 mg/kg, i.p.) for 21 d. Both treatments reversed the reduction in depolarization-evoked glutamate release and in the expression of synaptic vesicle-associated proteins in the ventral hippocampus of PRS rats. Antidepressant treatment also corrected abnormalities in anxiety-/depression-like behavior and social memory performance in PRS rats. The effect on glutamate release was strongly correlated with the improvement of anxiety-like behavior and social memory. These data offer the pharmacological demonstration that glutamatergic hypofunction in the ventral hippocampus lies at the core of the pathological phenotype caused by early life stress and represents an attractive pharmacological target for novel therapeutic strategies.


Asunto(s)
Antidepresivos/uso terapéutico , Ácido Glutámico/metabolismo , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Ansiedad/psicología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Depresión/psicología , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/psicología , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/psicología , Resultado del Tratamiento
16.
Chronobiol Int ; 31(3): 371-81, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24328729

RESUMEN

Depression and biological rhythms disturbances are strongly associated. Agomelatine is an antidepressant with melatoninergic MT1-MT2 agonist and serotoninergic 5-HT2c antagonist properties. Both melatonin and 5-HT are known to modulate circadian rhythmicity controlled by the endogenous clock located in the suprachiasmatic nuclei (SCN). The aim of the present study was to compare the effect of an acute injection of agomelatine (Ago), melatonin (MLT) or an antagonist 5-HT2c (S32006), on the rhythms of two robust clock outputs: the pineal MLT secretion and the body temperature rhythm (Tc). Daily endogenous MLT profiles were measured using transpineal microdialysis over 4 consecutive days in rats maintained on a 12 h light/12 h dark cycle. Simultaneously, Tc was recorded. The drugs were injected subcutaneously at three doses (1, 2.5 or 5 mg/kg) at the onset of darkness. Both Ago and MLT, at the dose of 2.5 mg/kg, increased the amplitude of the peak of MLT secretion and this effect was observed 2 d after injection. Moreover, both drugs induced a dose-dependent advance of the rhythm onset which resulted in lengthening of the MLT peak. S32006 had no effect on the rhythm of MLT. Ago, MLT and S32006 increased the amplitude of the rhythm of Tc. These data suggest a central action of Ago, directly on the SCN, via melatoninergic receptors responsible for both the increased amplitude of MLT rhythm and the phase advance. The increase in the amplitude of the body temperature could involve both MLT agonist and/or 5-HT2c antagonist properties of Ago.


Asunto(s)
Acetamidas/farmacología , Ritmo Circadiano/efectos de los fármacos , Melatonina/metabolismo , Núcleo Supraquiasmático/efectos de los fármacos , Animales , Masculino , Melatonina/agonistas , Fotoperiodo , Ratas , Ratas Wistar , Serotonina/metabolismo , Núcleo Supraquiasmático/metabolismo , Temperatura
17.
BMC Neurosci ; 14: 75, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23895555

RESUMEN

BACKGROUND: Growing compelling evidence from clinical and preclinical studies has demonstrated the primary role of alterations of glutamatergic transmission in cortical and limbic areas in the pathophysiology of mood disorders. Chronic antidepressants have been shown to dampen endogenous glutamate release from rat hippocampal synaptic terminals and to prevent the marked increase of glutamate overflow induced by acute behavioral stress in frontal/prefrontal cortex. Agomelatine, a new antidepressant endowed with MT1/MT2 agonist and 5-HT2C serotonergic antagonist properties, has shown efficacy at both preclinical and clinical levels. RESULTS: Chronic treatment with agomelatine, or with the reference drug venlafaxine, induced a marked decrease of depolarization-evoked endogenous glutamate release from purified hippocampal synaptic terminals in superfusion. No changes were observed in GABA release. This effect was accompanied by reduced accumulation of SNARE protein complexes, the key molecular effector of vesicle docking, priming and fusion at presynaptic membranes. CONCLUSIONS: Our data suggest that the novel antidepressant agomelatine share with other classes of antidepressants the ability to modulate glutamatergic transmission in hippocampus. Its action seems to be mediated by molecular mechanisms located on the presynaptic membrane and related with the size of the vesicle pool ready for release.


Asunto(s)
Acetamidas/farmacología , Antidepresivos/farmacología , Ciclohexanoles/farmacología , Ácido Glutámico/metabolismo , Hipocampo/citología , Sinaptosomas/efectos de los fármacos , Análisis de Varianza , Animales , Ionóforos de Calcio/farmacología , Ionomicina/farmacología , Masculino , Cloruro de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas SNARE/metabolismo , Sintaxina 1/metabolismo , Clorhidrato de Venlafaxina , Ácido gamma-Aminobutírico/metabolismo
18.
Int J Neuropsychopharmacol ; 16(2): 323-38, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22310059

RESUMEN

Agomelatine is a novel antidepressant acting as an MT1/MT2 melatonin receptor agonist/5-HT2C serotonin receptor antagonist. Because of its peculiar pharmacological profile, this drug caters the potential to correct the abnormalities of circadian rhythms associated with mood disorders, including abnormalities of the sleep/wake cycle. Here, we examined the effect of chronic agomelatine treatment on sleep architecture and circadian rhythms of motor activity using the rat model of prenatal restraint stress (PRS) as a putative 'aetiological' model of depression. PRS was delivered to the mothers during the last 10 d of pregnancy. The adult progeny ('PRS rats') showed a reduced duration of slow wave sleep, an increased duration of rapid eye movement (REM) sleep, an increased number of REM sleep events and an increase in motor activity before the beginning of the dark phase of the light/dark cycle. In addition, adult PRS rats showed an increased expression of the transcript of the primary response gene, c-Fos, in the hippocampus just prior to the beginning of the dark phase. All these changes were reversed by a chronic oral treatment with agomelatine (2000 ppm in the diet). The effect of agomelatine on sleep was largely attenuated by treatment with the MT1/MT2 melatonin receptor antagonist, S22153, which caused PRS-like sleep disturbances on its own. These data provide the first evidence that agomelatine corrects sleep architecture and restores circadian homeostasis in a preclinical model of depression and supports the value of agomelatine as a novel antidepressant that resynchronizes circadian rhythms under pathological conditions.


Asunto(s)
Acetamidas/uso terapéutico , Trastornos Cronobiológicos/tratamiento farmacológico , Hipnóticos y Sedantes/uso terapéutico , Trastornos del Movimiento/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Trastornos del Sueño-Vigilia/tratamiento farmacológico , Análisis de Varianza , Animales , Animales Recién Nacidos , Nivel de Alerta/efectos de los fármacos , Autorradiografía , Trastornos Cronobiológicos/etiología , Modelos Animales de Enfermedad , Esquema de Medicación , Electroencefalografía , Electromiografía , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Trastornos del Movimiento/etiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/patología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Melatonina/antagonistas & inhibidores , Restricción Física/efectos adversos , Trastornos del Sueño-Vigilia/etiología , Tiofenos/farmacología
19.
J Neurochem ; 123(5): 811-23, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22957735

RESUMEN

Dopamine plays an important role in cellular processes controlling the functional and structural plasticity of neurons, as well as their generation and proliferation, both in the developing and the adult brain. The precise roles of individual dopamine receptors subtypes in adult neurogenesis remain poorly defined, although D3 receptors are known to be involved in neurogenesis in the subventricular zone. By contrast, very few studies have addressed the influence of dopamine and D3 receptors upon neurogenesis in the subgranular zone of the hippocampus, an issue addressed herein employing constitutive D3 receptor knockout mice, or chronic exposure to the preferential D3 receptor antagonist, S33138. D3 receptor knockout mice revealed increased baseline levels of cell proliferation and ongoing neurogenesis, as measured both using Ki-67 and doublecortin, whereas there was no difference in cell survival as measured by BrdU (5-bromo-2'-deoxyuridine). Chronic administration of S33138 was shown to be functionally active in enhancing levels of the plasticity-related molecule, delta-FosB, in the D3 receptor-rich nucleus accumbens. In accordance with the stimulated neurogenesis seen in D3 receptor knockout mice, S33138 increased proliferation in wild-type mice. These observations suggest that D3 receptors exert a tonic, constitutive inhibitory influence upon adult hippocampal neurogenesis.


Asunto(s)
Proliferación Celular , Hipocampo/metabolismo , Neurogénesis/fisiología , Receptores de Dopamina D3/metabolismo , Animales , Hipocampo/citología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Brain Res ; 1466: 91-8, 2012 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-22647752

RESUMEN

Agomelatine is a potent melatonergic (MT1 and MT2) receptor agonist and 5HT(2C) antagonist that is an effective antidepressant in animal models of depression and in patients suffering from depression. Our recent studies revealed that acute restraint stress increases extracellular levels of glutamate and GABA and that these increases in amino acid efflux are inhibited by some but not all antidepressants. In view of the increasing evidence supporting a role of amino acids in the pathology of depression, the current study examined whether acute stress-mediated changes in glutamate and GABA neurotransmission are modulated by agomelatine. In agreement with our previous work, acute stress increases extracellular glutamate levels in the basolateral nucleus of the amygdala (BLA). Similarly, acute stress increases glutamate efflux in the central nucleus of the amygdala (CeA). In the hippocampus, acute stress increases glutamate efflux and elicits an oscillatory pattern of GABA efflux. Agomelatine administration (40mg/kg ip) prior to acute stress inhibited stress-mediated increases in glutamate efflux in the hippocampus, BLA and CeA. These results demonstrate that acute agomelatine administration effectively inhibits acute stress-mediated changes in extracellular glutamate in the rat hippocampus and amygdala. While acute stress did not modulate GABA efflux in these regions, agomelatine treatment induced an overall reduction of GABA levels in the hippocampus. These data suggest that agomelatine modulates amino acid efflux in limbic structures implicated in major depressive disorder.


Asunto(s)
Acetamidas/farmacología , Amígdala del Cerebelo/efectos de los fármacos , Antidepresivos/farmacología , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Hipocampo/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA