Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762560

RESUMEN

Signals of nerve impulses are transmitted to excitatory cells to induce the action of organs via the activation of Ca2+ entry through voltage-gated Ca2+ channels (VGCC), which are classified based on their activation threshold into high- and low-voltage activated channels, expressed specifically for each organ [...].


Asunto(s)
Canales de Calcio , Proteínas de Unión al Calcio , Potenciales de Acción
2.
Cells ; 12(5)2023 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-36899886

RESUMEN

V-ATPase is an important factor in synaptic vesicle acidification and is implicated in synaptic transmission. Rotation in the extra-membranous V1 sector drives proton transfer through the membrane-embedded multi-subunit V0 sector of the V-ATPase. Intra-vesicular protons are then used to drive neurotransmitter uptake by synaptic vesicles. V0a and V0c, two membrane subunits of the V0 sector, have been shown to interact with SNARE proteins, and their photo-inactivation rapidly impairs synaptic transmission. V0d, a soluble subunit of the V0 sector strongly interacts with its membrane-embedded subunits and is crucial for the canonic proton transfer activity of the V-ATPase. Our investigations show that the loop 1.2 of V0c interacts with complexin, a major partner of the SNARE machinery and that V0d1 binding to V0c inhibits this interaction, as well as V0c association with SNARE complex. The injection of recombinant V0d1 in rat superior cervical ganglion neurons rapidly reduced neurotransmission. In chromaffin cells, V0d1 overexpression and V0c silencing modified in a comparable manner several parameters of unitary exocytotic events. Our data suggest that V0c subunit promotes exocytosis via interactions with complexin and SNAREs and that this activity can be antagonized by exogenous V0d.


Asunto(s)
Proteínas SNARE , ATPasas de Translocación de Protón Vacuolares , Ratas , Animales , Proteínas SNARE/metabolismo , Protones , Vesículas Sinápticas/metabolismo , Fusión de Membrana , ATPasas de Translocación de Protón Vacuolares/metabolismo
3.
Biomedicines ; 10(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35884898

RESUMEN

Within 1 millisecond of action potential arrival at presynaptic terminals voltage-gated Ca2+ channels open. The Ca2+ channels are linked to synaptic vesicles which are tethered by active zone proteins. Ca2+ entrance into the active zone triggers: (1) the fusion of the vesicle and exocytosis, (2) the replenishment of the active zone with vesicles for incoming exocytosis, and (3) various types of endocytosis for vesicle reuse, dependent on the pattern of firing. These time-dependent vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating active zone scaffold proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes, and even Ca2+ channels, following the decay of Ca2+ concentration after the action potential. Here, I summarize the Ca2+-dependent protein controls of synchronous and asynchronous vesicle release, rapid replenishment of the active zone, endocytosis, and short-term plasticity within 100 msec after the action potential. Furthermore, I discuss the contribution of active zone proteins to presynaptic plasticity and to homeostatic readjustment during and after intense activity, in addition to activity-dependent endocytosis.

4.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769208

RESUMEN

An action potential triggers neurotransmitter release from synaptic vesicles docking to a specialized release site of the presynaptic plasma membrane, the active zone. The active zone is a highly organized structure with proteins that serves as a platform for synaptic vesicle exocytosis, mediated by SNAREs complex and Ca2+ sensor proteins, within a sub-millisecond opening of nearby Ca2+ channels with the membrane depolarization. In response to incoming neuronal signals, each active zone protein plays a role in the release-ready site replenishment with synaptic vesicles for sustainable synaptic transmission. The active zone release apparatus provides a possible link between neuronal activity and plasticity. This review summarizes the mostly physiological role of active zone protein interactions that control synaptic strength, presynaptic short-term plasticity, and homeostatic synaptic plasticity.


Asunto(s)
Canales de Calcio/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica , Potenciales de Acción , Animales , Humanos , Plasticidad Neuronal , Neurotransmisores/metabolismo , Mapas de Interacción de Proteínas , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo
5.
Cell Calcium ; 93: 102326, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33360835

RESUMEN

SUMOylation is an important post-translational modification process involving covalent attachment of SUMO (Small Ubiquitin-like MOdifier) protein to target proteins. Here, we investigated the potential for SUMO-1 protein to modulate the function of the CaV2.2 (N-type) voltage-gated calcium channel (VGCC), a protein vital for presynaptic neurotransmitter release. Co-expression of SUMO-1, but not the conjugation-deficient mutant SUMO-1ΔGG, increased heterologously-expressed CaV2.2 Ca2+ current density, an effect potentiated by the conjugating enzyme Ubc9. Expression of sentrin-specific protease (SENP)-1 or Ubc9 alone, had no effect on recombinant CaV2.2 channels. Co-expression of SUMO-1 and Ubc9 caused an increase in whole-cell maximal conductance (Gmax) and a hyperpolarizing shift in the midpoint of activation (V1/2). Mutation of all five CaV2.2 lysine residues to arginine within the five highest probability (>65 %) SUMOylation consensus motifs (SCMs) (construct CaV2.2-Δ5KR), produced a loss-of-function mutant. Mutagenesis of selected individual lysine residues identified K394, but not K951, as a key residue for SUMO-1-mediated increase in CaV2.2 Ca2+ current density. In synaptically-coupled superior cervical ganglion (SCG) neurons, SUMO-1 protein was distributed throughout the cell body, axons and dendrites and presumptive presynaptic terminals, whilst SUMO-1ΔGG protein was largely confined to the cell body, in particular, the nucleus. SUMO-1 expression caused increases in paired excitatory postsynaptic potential (EPSP) ratio at short (20-120 ms) inter-stimuli intervals in comparison to SUMO-1ΔGG, consistent with an increase in residual presynaptic Ca2+ current and an increase in release probability of synaptic vesicles. Together, these data provide evidence for CaV2.2 VGCCs as novel targets for SUMOylation pathways.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Transducción de Señal , Sumoilación , Animales , Fenómenos Biofísicos , Potenciales Postsinápticos Excitadores , Femenino , Células HEK293 , Humanos , Mutación con Pérdida de Función/genética , Lisina/genética , Masculino , Proteínas Mutantes/metabolismo , Ratas Wistar , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Ganglio Cervical Superior/citología , Enzimas Ubiquitina-Conjugadoras/metabolismo
6.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396919

RESUMEN

An action potential (AP) triggers neurotransmitter release from synaptic vesicles (SVs) docking to a specialized release site of presynaptic plasma membrane, the active zone (AZ). The AP simultaneously controls the release site replenishment with SV for sustainable synaptic transmission in response to incoming neuronal signals. Although many studies have suggested that the replenishment time is relatively slow, recent studies exploring high speed resolution have revealed SV dynamics with milliseconds timescale after an AP. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an AP. This review summarizes how millisecond Ca2+ dynamics activate multiple protein cascades for control of the release site replenishment with release-ready SVs that underlie presynaptic short-term plasticity.


Asunto(s)
Plasticidad Neuronal , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica , Animales , Humanos
7.
Int J Mol Sci ; 20(9)2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31064106

RESUMEN

Presynaptic Ca2+ entry occurs through voltage-gated Ca2+ (CaV) channels which are activated by membrane depolarization. Depolarization accompanies neuronal firing and elevation of Ca2+ triggers neurotransmitter release from synaptic vesicles. For synchronization of efficient neurotransmitter release, synaptic vesicles are targeted by presynaptic Ca2+ channels forming a large signaling complex in the active zone. The presynaptic CaV2 channel gene family (comprising CaV2.1, CaV2.2, and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are responsible for channel modulation by interacting with regulatory proteins. This article overviews modulation of the activity of CaV2.1 and CaV2.2 channels in the control of synaptic strength and presynaptic plasticity.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Terminales Presinápticos/metabolismo , Animales , Canales de Calcio Tipo N/genética , Proteínas de Unión al Calcio/metabolismo , Humanos , Terminales Presinápticos/fisiología , Potenciales Sinápticos
8.
Neurosci Res ; 127: 33-44, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29317246

RESUMEN

At the presynaptic terminal, neuronal firing activity induces membrane depolarization and subsequent Ca2+ entry through voltage-gated Ca2+ (CaV) channels triggers neurotransmitter release from the active zone. Presynaptic Ca2+ channels form a large signaling complex, which targets synaptic vesicles to Ca2+ channels for efficient release and mediates Ca2+ channel regulation. The presynaptic CaV2 channel family (comprising CaV2.1, CaV2.2 and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are the target of regulatory proteins for channel modulation. Modulation of presynaptic Ca2+ channels has a powerful influence on synaptic transmission. This article overviews spatial and temporal regulation of Ca2+ channels by effectors and sensors of Ca2+ signaling, and describes the emerging evidence for a critical role of Ca2+ channel regulation in control of synaptic transmission and presynaptic plasticity. Sympathetic superior cervical ganglion neurons in culture expressing CaV2.2 channels represent a well-characterized system for investigating synaptic transmission. The exogenously expressed α1 subunit of the CaV2.1 as well as endogenous CaV2.2 was examined for modulation of channel activity, and thereby regulation of synaptic transmission. The constitutive and Ca2+-dependent modulation of CaV2.1 channels coordinately act as spatial and temporal molecular switches to control synaptic efficacy.


Asunto(s)
Canales de Calcio/fisiología , Neuronas/citología , Terminales Presinápticos/metabolismo , Animales , Calcio/metabolismo , Humanos , Modelos Moleculares , Transmisión Sináptica/fisiología
9.
Proc Jpn Acad Ser B Phys Biol Sci ; 93(10): 802-820, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29225307

RESUMEN

For reliable transmission at chemical synapses, neurotransmitters must be released dynamically in response to neuronal activity in the form of action potentials. Stable synaptic transmission is dependent on the efficacy of transmitter release and the rate of resupplying synaptic vesicles to their release sites. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an action potential. Presynaptic Ca2+ concentration changes are dynamic functions in space and time, with wide fluctuations associated with different rates of neuronal activity. Thus, regulation of transmitter release includes reactions involving multiple Ca2+-dependent proteins, each operating over a specific time window. Classically, studies of presynaptic proteins function favored large invertebrate presynaptic terminals. I have established a useful mammalian synapse model based on sympathetic neurons in culture. This review summarizes the use of this model synapse to study the roles of presynaptic proteins in neuronal activity for the control of transmitter release efficacy and synaptic vesicle recycling.


Asunto(s)
Neurotransmisores/metabolismo , Proteínas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Humanos , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
10.
Cell Rep ; 16(11): 2901-2913, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27626661

RESUMEN

Short-term synaptic depression (STD) is a common form of activity-dependent plasticity observed widely in the nervous system. Few molecular pathways that control STD have been described, but the active zone (AZ) release apparatus provides a possible link between neuronal activity and plasticity. Here, we show that an AZ cytomatrix protein CAST and an AZ-associated protein kinase SAD-B coordinately regulate STD by controlling reloading of the AZ with release-ready synaptic vesicles. SAD-B phosphorylates the N-terminal serine (S45) of CAST, and S45 phosphorylation increases with higher firing rate. A phosphomimetic CAST (S45D) mimics CAST deletion, which enhances STD by delaying reloading of the readily releasable pool (RRP), resulting in a pool size decrease. A phosphonegative CAST (S45A) inhibits STD and accelerates RRP reloading. Our results suggest that the CAST/SAD-B reaction serves as a brake on synaptic transmission by temporal calibration of activity and synaptic depression via RRP size regulation.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Endocitosis , Potenciación a Largo Plazo , Proteínas Serina-Treonina Quinasas/metabolismo , Vesículas Sinápticas/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/farmacología , Membrana Celular/fisiología , Proteínas del Citoesqueleto/química , Células HEK293 , Humanos , Potenciales de la Membrana/fisiología , Ratones Transgénicos , Neuronas/metabolismo , Fosforilación , Ratas , Ganglio Cervical Superior/citología
11.
J Neurosci ; 35(23): 8901-13, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26063922

RESUMEN

Presynaptic nerve terminals must maintain stable neurotransmissions via synaptic vesicle (SV) resupply despite encountering wide fluctuations in the number and frequency of incoming action potentials (APs). However, the molecular mechanism linking variation in neural activity to SV resupply is unknown. Myosins II and VI are actin-based cytoskeletal motors that drive dendritic actin dynamics and membrane transport, respectively, at brain synapses. Here we combined genetic knockdown or molecular dysfunction and direct physiological measurement of fast synaptic transmission from paired rat superior cervical ganglion neurons in culture to show that myosins IIB and VI work individually in SV reuse pathways, having distinct dependency and time constants with physiological AP frequency. Myosin VI resupplied the readily releasable pool (RRP) with slow kinetics independently of firing rates but acted quickly within 50 ms after AP. Under high-frequency AP firing, myosin IIB resupplied the RRP with fast kinetics in a slower time window of 200 ms. Knockdown of both myosin and dynamin isoforms by mixed siRNA microinjection revealed that myosin IIB-mediated SV resupply follows amphiphysin/dynamin-1-mediated endocytosis, while myosin VI-mediated SV resupply follows dynamin-3-mediated endocytosis. Collectively, our findings show how distinct myosin isoforms work as vesicle motors in appropriate SV reuse pathways associated with specific firing patterns.


Asunto(s)
Dinamina I/metabolismo , Neuronas/fisiología , Miosina Tipo IIB no Muscular/metabolismo , Vesículas Sinápticas/metabolismo , Miosinas Ventriculares/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Células Cultivadas , Dinamina I/genética , Estimulación Eléctrica , Endocitosis/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/farmacología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Ganglio Cervical Superior/citología , Factores de Tiempo , Miosinas Ventriculares/genética , Miosinas Ventriculares/farmacología
12.
Eur J Neurosci ; 41(4): 398-409, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25484265

RESUMEN

Synaptic vesicle glycoprotein (SV)2A is a transmembrane protein found in secretory vesicles and is critical for Ca(2+) -dependent exocytosis in central neurons, although its mechanism of action remains uncertain. Previous studies have proposed, variously, a role of SV2 in the maintenance and formation of the readily releasable pool (RRP) or in the regulation of Ca(2+) responsiveness of primed vesicles. Such previous studies have typically used genetic approaches to ablate SV2 levels; here, we used a strategy involving small interference RNA (siRNA) injection to knockdown solely presynaptic SV2A levels in rat superior cervical ganglion (SCG) neuron synapses. Moreover, we investigated the effects of SV2A knockdown on voltage-dependent Ca(2+) channel (VDCC) function in SCG neurons. Thus, we extended the studies of SV2A mechanisms by investigating the effects on vesicular transmitter release and VDCC function in peripheral sympathetic neurons. We first demonstrated an siRNA-mediated SV2A knockdown. We showed that this SV2A knockdown markedly affected presynaptic function, causing an attenuated RRP size, increased paired-pulse depression and delayed RRP recovery after stimulus-dependent depletion. We further demonstrated that the SV2A-siRNA-mediated effects on vesicular release were accompanied by a reduction in VDCC current density in isolated SCG neurons. Together, our data showed that SV2A is required for correct transmitter release at sympathetic neurons. Mechanistically, we demonstrated that presynaptic SV2A: (i) acted to direct normal synaptic transmission by maintaining RRP size, (ii) had a facilitatory role in recovery from synaptic depression, and that (iii) SV2A deficits were associated with aberrant Ca(2+) current density, which may contribute to the secretory phenotype in sympathetic peripheral neurons.


Asunto(s)
Canales de Calcio/metabolismo , Exocitosis , Glicoproteínas de Membrana/metabolismo , Ganglio Cervical Superior/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Células Cultivadas , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/genética , Ratas , Ratas Wistar , Ganglio Cervical Superior/citología , Sinapsis/fisiología , Transmisión Sináptica
13.
J Neurosci ; 34(32): 10603-15, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25100594

RESUMEN

α-Synuclein is thought to regulate neurotransmitter release through multiple interactions with presynaptic proteins, cytoskeletal elements, ion channels, and synaptic vesicles membrane. α-Synuclein is abundant in the presynaptic compartment, and its release from neurons and glia has been described as responsible for spreading of α-synuclein-derived pathology. α-Synuclein-dependent dysregulation of neurotransmitter release might occur via its action on surface-exposed calcium channels. Here, we provide electrophysiological and biochemical evidence to show that α-synuclein, applied to rat neurons in culture or striatal slices, selectively activates Cav2.2 channels, and said activation correlates with increased neurotransmitter release. Furthermore, in vivo perfusion of α-synuclein into the striatum also leads to acute dopamine release. We further demonstrate that α-synuclein reduces the amount of plasma membrane cholesterol and alters the partitioning of Cav2.2 channels, which move from raft to cholesterol-poor areas of the plasma membrane. We provide evidence for a novel mechanism through which α-synuclein acts from the extracellular milieu to modulate neurotransmitter release and propose a unifying hypothesis for the mechanism of α-synuclein action on multiple targets: the reorganization of plasma membrane microdomains.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Dopamina/metabolismo , Microdominios de Membrana/efectos de los fármacos , Neuronas/citología , alfa-Sinucleína/farmacología , Compuestos de Anilina/metabolismo , Animales , Anticuerpos/farmacología , Canales de Calcio Tipo N/inmunología , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Bloqueadores de los Canales de Sodio/farmacología , Ganglio Cervical Superior/citología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Sinaptofisina/metabolismo , Xantenos/metabolismo
14.
Mol Pharmacol ; 86(3): 297-305, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24981043

RESUMEN

Calcium regulation of neurotransmitter release is essential for maintenance of synaptic transmission. However, the temporal and spatial organization of Ca(2+) dynamics that regulate synaptic vesicle (SV) release efficacy in sympathetic neurons is poorly understood. Here, we investigate the N-type Ca(2+) channel-mediated kinetic structure of Ca(2+) regulation of cholinergic transmission of sympathetic neurons. We measured the effect of Ca(2+) chelation with fast 1,2-bis(2-aminophenoxy) ethane-tetraacetic acid (BAPTA) and slow ethyleneglycol-tetraacetic acid (EGTA) buffers on exocytosis, synaptic depression, and recovery of the readily releasable vesicle pool (RRP), after both single action potential (AP) and repetitive APs. Surprisingly, postsynaptic potentials peaking at ~12 milliseconds after the AP was inhibited by both rapid and slow Ca(2+) buffers suggests that, in addition to the well known fast Ca(2+) signals at the active zone (AZ), slow Ca(2+) signals at the peak of Ca(2+) entry also contribute to paired-pulse or repetitive AP responses. Following a single AP, discrete Ca(2+) transient increase regulated synaptic depression in rapid (<30-millisecond) and slow (<120-millisecond) phases. In contrast, following prolonged AP trains, synaptic depression was reduced by a slow Ca(2+) signal regulation lasting >200 milliseconds. Finally, after an AP burst, recovery of the RRP was mediated by an AP-dependent rapid Ca(2+) signal, and the expansion of releasable SV number by an AP firing activity-dependent slow Ca(2+) signal. These data indicate that local Ca(2+) signals operating near Ca(2+) sources in the AZ are organized into discrete fast and slow temporal phases that remodel exocytosis and short-term plasticity to ensure long-term stability in acetylcholine release efficacy.


Asunto(s)
Acetilcolina/metabolismo , Señalización del Calcio , Neuronas/metabolismo , Ganglio Cervical Superior/citología , Vesículas Sinápticas/metabolismo , Potenciales de Acción , Animales , Células Cultivadas , Quelantes/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Plasticidad Neuronal , Ratas Wistar , Ganglio Cervical Superior/metabolismo , Transmisión Sináptica
15.
J Biol Chem ; 288(26): 19050-9, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23687302

RESUMEN

Presynaptic nerve terminals must maintain stable neurotransmission via synaptic vesicle membrane recycling despite encountering wide fluctuations in the number and frequency of incoming action potentials (APs). However, the molecular mechanism linking variation in neuronal activity to vesicle trafficking is unknown. Here, we combined genetic knockdown and direct physiological measurements of synaptic transmission from paired neurons to show that three isoforms of dynamin, an essential endocytic protein, work individually to match vesicle reuse pathways, having distinct rate and time constants with physiological AP frequencies. Dynamin 3 resupplied the readily releasable pool with slow kinetics independently of the AP frequency but acted quickly, within 20 ms of the incoming AP. Under high-frequency firing, dynamin 1 regulated recycling to the readily releasable pool with fast kinetics in a slower time window of greater than 50 ms. Dynamin 2 displayed a hybrid response between the other isoforms. Collectively, our findings show how dynamin isoforms select appropriate vesicle reuse pathways associated with specific neuronal firing patterns.


Asunto(s)
Potenciales de Acción/fisiología , Dinaminas/fisiología , Vesículas Sinápticas/fisiología , Animales , Electrofisiología , Endocitosis , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Neuronas/fisiología , Células PC12 , Terminales Presinápticos/fisiología , Isoformas de Proteínas/fisiología , Ratas , Ratas Wistar , Transmisión Sináptica/fisiología
16.
J Biol Chem ; 288(7): 4637-48, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23255606

RESUMEN

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of Ca(V)2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca(2+)/CaM stimulus. Autophosphorylated CaMKII can bind the Ca(V)2.1 channel and synapsin-1 simultaneously. CaMKII binding to Ca(V)2.1 channels induces Ca(2+)-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of Ca(V)2.1 channels by binding of Ca(2+)/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to Ca(V)2.1 channels. These results define the functional properties of a signaling complex of CaMKII and Ca(V)2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity.


Asunto(s)
Canales de Calcio Tipo N/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Regulación de la Expresión Génica , Electrofisiología/métodos , Humanos , Modelos Biológicos , Plasticidad Neuronal , Neurotransmisores/metabolismo , Fosforilación , Terminales Presinápticos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Transfección
17.
Proc Natl Acad Sci U S A ; 109(42): 17069-74, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23027954

RESUMEN

Modulation of P/Q-type Ca(2+) currents through presynaptic voltage-gated calcium channels (Ca(V)2.1) by binding of Ca(2+)/calmodulin contributes to short-term synaptic plasticity. Ca(2+)-binding protein-1 (CaBP1) and Visinin-like protein-2 (VILIP-2) are neurospecific calmodulin-like Ca(2+) sensor proteins that differentially modulate Ca(V)2.1 channels, but how they contribute to short-term synaptic plasticity is unknown. Here, we show that activity-dependent modulation of presynaptic Ca(V)2.1 channels by CaBP1 and VILIP-2 has opposing effects on short-term synaptic plasticity in superior cervical ganglion neurons. Expression of CaBP1, which blocks Ca(2+)-dependent facilitation of P/Q-type Ca(2+) current, markedly reduced facilitation of synaptic transmission. VILIP-2, which blocks Ca(2+)-dependent inactivation of P/Q-type Ca(2+) current, reduced synaptic depression and increased facilitation under conditions of high release probability. These results demonstrate that activity-dependent regulation of presynaptic Ca(V)2.1 channels by differentially expressed Ca(2+) sensor proteins can fine-tune synaptic responses to trains of action potentials and thereby contribute to the diversity of short-term synaptic plasticity.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Calmodulina/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Análisis de Varianza , Humanos , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo
18.
Mol Pharmacol ; 82(2): 199-208, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22554805

RESUMEN

Levetiracetam (LEV) is a prominent antiepileptic drug that binds to neuronal synaptic vesicle glycoprotein 2A protein and has reported effects on ion channels, but with a poorly defined mechanism of action. We investigated inhibition of voltage-dependent Ca(2+) (Ca(V)) channels as a potential mechanism through which LEV exerts effects on neuronal activity. We used electrophysiological methods to investigate the effects of LEV on cholinergic synaptic transmission and Ca(V) channel activity in superior cervical ganglion neurons (SCGNs). In parallel, we investigated the effects of the inactive LEV R-enantiomer, (R)-α-ethyl-2-oxo-1-pyrrolidine acetamide (UCB L060). LEV but not UCB L060 (each at 100 µM) inhibited synaptic transmission between SCGNs in long-term culture in a time-dependent manner, significantly reducing excitatory postsynaptic potentials after a ≥30-min application. In isolated SCGNs, LEV pretreatment (≥1 h) but not short-term application (5 min) significantly inhibited whole-cell Ba(2+) current (I(Ba)) amplitude. In current-clamp recordings, LEV reduced the amplitude of the afterhyperpolarizing potential in a Ca(2+)-dependent manner but also increased the action potential latency in a Ca(2+)-independent manner, which suggests additional mechanisms associated with reduced excitability. Intracellular LEV application (4-5 min) caused rapid inhibition of I(Ba) amplitude, to an extent comparable to that seen with extracellular LEV pretreatment (≥1 h). Neither pretreatment nor intracellular application of UCB L060 produced any inhibitory effects on I(Ba) amplitude. These results identify a stereospecific intracellular pathway through which LEV inhibits presynaptic Ca(V) channels; resultant reductions in neuronal excitability are proposed to contribute to the anticonvulsant effects of LEV.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio , Líquido Intracelular/efectos de los fármacos , Glicoproteínas de Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Piracetam/análogos & derivados , Terminales Presinápticos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Bloqueadores de los Canales de Calcio/metabolismo , Canales de Calcio/metabolismo , Líquido Intracelular/metabolismo , Levetiracetam , Ligandos , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Piracetam/metabolismo , Piracetam/farmacología , Terminales Presinápticos/fisiología , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Ganglio Cervical Superior/efectos de los fármacos , Ganglio Cervical Superior/metabolismo
19.
Neurosci Res ; 70(1): 16-23, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21453732

RESUMEN

Neuronal firing activity controls protein function and dynamically remodels synaptic efficacy. Exocytosis is triggered and regulated by Ca²+ which enters through voltage-gated Ca²+(CaV) channels and diffuses into the presynaptic terminal accompanying action potential firings. Residual Ca²+ is sensed by Ca²+-binding proteins; among other potential actions, it mediates time- and space-dependent synaptic facilitation and depression via effects on Ca(V)2 channel gating and vesicle replenishment in the readily releasable pool (RRP). Mitochondria are also associated with short-term synaptic plasticity due to a sufficient ATP supply for vesicle mobilization into the RRP. Mitochondria-deficient synapses with impaired anterograde transport of mitochondria in neuronal processes show defects in presynaptic short-term plasticity.


Asunto(s)
Potenciales de Acción/fisiología , Exocitosis/fisiología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/fisiología , Vesículas Sinápticas/fisiología , Animales , Canales de Calcio/fisiología , Humanos , Receptores de Glutamato Metabotrópico/fisiología
20.
J Physiol ; 589(Pt 13): 3085-101, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21521766

RESUMEN

Modulation of presynaptic voltage-dependent Ca2+ channels is a major means of controlling neurotransmitter release. The CaV2.2Ca2+ channel subunit contains several inhibitory interaction sites for Gßγ subunits, including the amino terminal (NT) and I-II loop. The NT and I-II loop have also been proposed to undergo a G protein-gated inhibitory interaction, whilst the NT itself has also been proposed to suppress CaV2 channel activity. Here, we investigate the effects of an amino terminal (CaV2.2[45-55]) 'NT peptide' and a I-II loop alpha interaction domain (CaV2.2[377-393]) 'AID peptide' on synaptic transmission, Ca2+ channel activity and G protein modulation in superior cervical ganglion neurones (SCGNs). Presynaptic injection of NT or AID peptide into SCGN synapses inhibited synaptic transmission and also attenuated noradrenaline-induced G protein modulation. In isolated SCGNs, NT and AID peptides reduced whole-cell Ca2+ current amplitude, modified voltage dependence of Ca2+ channel activation and attenuated noradrenaline-induced G protein modulation. Co-application of NT and AID peptide negated inhibitory actions. Together, these data favour direct peptide interaction with presynaptic Ca2+ channels, with effects on current amplitude and gating representing likely mechanisms responsible for inhibition of synaptic transmission. Mutations to residues reported as determinants of Ca2+ channel function within the NT peptide negated inhibitory effects on synaptic transmission, Ca2+ current amplitude and gating and G protein modulation. A mutation within the proposed QXXER motif for G protein modulation did not abolish inhibitory effects of the AID peptide. This study suggests that the CaV2.2 amino terminal and I-II loop contribute molecular determinants for Ca2+ channel function; the data favour a direct interaction of peptides with Ca2+ channels to inhibit synaptic transmission and attenuate G protein modulation.


Asunto(s)
Canales de Calcio Tipo N/fisiología , Proteínas de Unión al GTP/antagonistas & inhibidores , Proteínas de Unión al GTP/fisiología , Inhibición Neural/fisiología , Péptidos/fisiología , Transmisión Sináptica/fisiología , Secuencia de Aminoácidos , Animales , Canales de Calcio Tipo N/síntesis química , Potenciales Postsinápticos Excitadores/fisiología , Datos de Secuencia Molecular , Péptidos/síntesis química , Estructura Terciaria de Proteína , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...