Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38549434

RESUMEN

With increasing global consumption of caffeine-rich products, such as coffee, tea, and energy drinks, there is also an increase in urban and processing waste full of residual caffeine with limited disposal options. This waste caffeine has been found to leach into the surrounding environment where it poses a threat to microorganisms, insects, small animals, and entire ecosystems. Growing interest in harnessing this environmental contaminant has led to the discovery of 79 bacterial strains, eight yeast strains, and 32 fungal strains capable of metabolizing caffeine by N-demethylation and/or C-8 oxidation. Recently observed promiscuity of caffeine-degrading enzymes in vivo has opened up the possibility of engineering bacterial strains capable of producing a wide variety of caffeine derivatives from a renewable resource. These engineered strains can be used to reduce the negative environmental impact of leached caffeine-rich waste through bioremediation efforts supplemented by our increasing understanding of new techniques such as cell immobilization. Here, we compile all of the known caffeine-degrading microbial strains, discuss their metabolism and related enzymology, and investigate their potential application in bioremediation.


Asunto(s)
Bacterias , Biodegradación Ambiental , Cafeína , Hongos , Cafeína/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Hongos/metabolismo , Hongos/genética , Levaduras/metabolismo , Levaduras/genética
2.
J Biotechnol ; 379: 25-32, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38029843

RESUMEN

1-Methylxanthine is a high-value derivative of caffeine of limited natural availability with many potential pharmaceutical applications. Unfortunately, production of 1-methylxanthine through purely chemical methods of synthesis are unfavorable due to lengthy chemical processes and the requirement of hazardous chemicals, ultimately resulting in low yields. Here, we describe a novel biosynthetic process for the production of 1-methylxanthine from theophylline using engineered Escherichia coli whole-cell biocatalysts and reaction optimization. When scaled-up to 1590 mL, the simple biocatalytic reaction produced approximately 1188 mg 1-methylxanthine from 1444 mg theophylline, constituting gram-scale production of 1-methylxanthine in as little as 3 hours. Following HPLC purification and solvent evaporation, 1163 mg of dried 1-methylxanthine powder was collected, resulting in a 97.9 wt% product recovery at a purity of 97.8%. This is the first report of a biocatalytic process designed specifically for the production and purification of the high-value biochemical 1-methylxanthine from theophylline. This process is also the most robust methylxanthine N-demethylation process featuring engineered E. coli to date, capable of gram-scale production.


Asunto(s)
Escherichia coli , Teofilina , Teofilina/química , Teofilina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cafeína/metabolismo , Biodegradación Ambiental
3.
J Biol Eng ; 17(1): 2, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627657

RESUMEN

BACKGROUND: 7-Methylxanthine, a derivative of caffeine noted for its lack of toxicity and ability to treat and even prevent myopia progression, is a high-value biochemical with limited natural availability. Attempts to produce 7-methylxanthine through purely chemical methods of synthesis are faced with complicated chemical processes and/or the requirement of a variety of hazardous chemicals, resulting in low yields and racemic mixtures of products. In recent years, we have developed engineered microbial cells to produce several methylxanthines, including 3-methylxanthine, theobromine, and paraxanthine. The purpose of this study is to establish a more efficient biosynthetic process for the production of 7-methylxanthine from caffeine. RESULTS: Here, we describe the use of a mixed-culture system composed of Escherichia coli strains engineered as caffeine and theobromine "specialist" cells. Optimal reaction conditions for the maximal conversion of caffeine to 7-methylxanthine were determined to be equal concentrations of caffeine and theobromine specialist cells at an optical density (600 nm) of 50 reacted with 2.5 mM caffeine for 5 h. When scaled-up to 560 mL, the simple biocatalytic reaction produced 183.81 mg 7-methylxanthine from 238.38 mg caffeine under ambient conditions, an 85.6% molar conversion. Following HPLC purification and solvent evaporation, 153.3 mg of dried 7-methylxanthine powder was collected, resulting in an 83.4% product recovery. CONCLUSION: We present the first report of a biocatalytic process designed specifically for the production and purification of the high-value biochemical 7-methylxanthine from caffeine using a mixed culture of E. coli strains. This process constitutes the most efficient method for the production of 7-methylxanthine from caffeine to date.

4.
Biotechnol Bioeng ; 119(11): 3326-3331, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36059194

RESUMEN

7-Methylxanthine, a derivative of caffeine (1,3,7-trimethylxanthine), is a high-value compound that has multiple medical applications, particularly with respect to eye health. Here, we demonstrate the biocatalytic production of 7-methylxanthine from caffeine using Escherichia coli strain MBM019, which was constructed for production of paraxanthine (1,7-dimethylxanthine). The mutant N-demethylase NdmA4, which was previously shown to catalyze N3 -demethylation of caffeine to produce paraxanthine, also retains N1 -demethylation activity toward paraxanthine. This study demonstrates that whole cell biocatalysts containing NdmA4 are more active toward paraxanthine than caffeine. We used four serial resting cell assays, with spent cells exchanged for fresh cells between each round, to produce 2,120 µM 7-methylxanthine and 552 µM paraxanthine from 4,331 µM caffeine. The purified 7-methylxanthine and paraxanthine were then isolated via preparatory-scale HPLC, resulting in 177.3 mg 7-methylxanthine and 48.1 mg paraxanthine at high purity. This is the first reported strain genetically optimized for the biosynthetic production of 7-methylxanthine from caffeine.


Asunto(s)
Cafeína , Escherichia coli , Escherichia coli/genética , Oxidorreductasas N-Desmetilantes , Xantinas
5.
Front Microbiol ; 12: 644768, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889142

RESUMEN

The coffee berry borer, the most economically important insect pest of coffee worldwide, is the only insect capable of feeding and reproducing solely on the coffee seed, a food source containing the purine alkaloid caffeine. Twenty-one bacterial species associated with coffee berry borers from Hawai'i, Mexico, or a laboratory colony in Maryland (Acinetobacter sp. S40, S54, S55, Bacillus aryabhattai, Delftia lacustris, Erwinia sp. S38, S43, S63, Klebsiella oxytoca, Ochrobactrum sp. S45, S46, Pantoea sp. S61, Pseudomonas aeruginosa, P. parafulva, and Pseudomonas sp. S30, S31, S32, S37, S44, S60, S75) were found to have at least one of five caffeine N-demethylation genes (ndmA, ndmB, ndmC, ndmD, ndmE), with Pseudomonas spp. S31, S32, S37, S60 and P. parafulva having the full complement of these genes. Some of the bacteria carrying the ndm genes were detected in eggs, suggesting possible vertical transmission, while presence of caffeine-degrading bacteria in frass, e.g., P. parafulva (ndmABCDE) and Bacillus aryabhattai (ndmA) could result in horizontal transmission to all insect life stages. Thirty-five bacterial species associated with the insect (Acinetobacter sp. S40, S54, S55, B. aryabhattai, B. cereus group, Bacillus sp. S29, S70, S71, S72, S73, D. lacustris, Erwinia sp. S38, S43, S59, S63, K. oxytoca, Kosakonia cowanii, Ochrobactrum sp. S45, S46, Paenibacillus sp. S28, Pantoea sp. S61, S62, P. aeruginosa, P. parafulva, Pseudomonas sp. S30, S31, S32, S37, S44, S60, S75, Stenotrophomonas sp. S39, S41, S48, S49) might contribute to caffeine breakdown using the C-8 oxidation pathway, based on presence of genes required for this pathway. It is possible that caffeine-degrading bacteria associated with the coffee berry borer originated as epiphytes and endophytes in the coffee plant microbiota.

6.
Microbiol Resour Announc ; 9(28)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32646901

RESUMEN

Pseudomonas strain CES was isolated from caffeine-enriched soil and found to possess the N-demethylation pathway for caffeine breakdown. We report the nucleotide sequence of the draft genome with 5,827,822 bp, 62.6% G+C content, and 5,427 protein-coding regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA