Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(9): 2410-2421, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38997519

RESUMEN

Many CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein) systems, which provide bacteria with adaptive immunity against phages, are transcriptionally repressed in their native hosts. How CRISPR-Cas expression is induced as needed, for example, during a bacteriophage infection, remains poorly understood. In Streptococcus pyogenes, a non-canonical guide RNA tracr-L directs Cas9 to autorepress its own promoter. Here we describe a dynamic subpopulation of cells harbouring single mutations that disrupt Cas9 binding and cause CRISPR-Cas overexpression. Cas9 actively expands this population by elevating mutation rates at the tracr-L target site. Overexpressers show higher rates of memory formation, stronger potency of old memories and a larger memory storage capacity relative to wild-type cells, which are surprisingly vulnerable to phage infection. However, in the absence of phage, CRISPR-Cas overexpression reduces fitness. We propose that CRISPR-Cas overexpressers are critical players in phage defence, enabling bacterial populations to mount rapid transcriptional responses to phage without requiring transient changes in any one cell.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Streptococcus pyogenes , Streptococcus pyogenes/genética , Streptococcus pyogenes/virología , Bacteriófagos/genética , Bacteriófagos/fisiología , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Mutación , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Regiones Promotoras Genéticas , Fagos de Streptococcus/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Regulación Bacteriana de la Expresión Génica
2.
Cell Rep ; 43(3): 113849, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38427560

RESUMEN

CRISPR-Cas immune systems provide bacteria with adaptive immunity against bacteriophages, but they are often transcriptionally repressed to mitigate auto-immunity. In some cases, CRISPR-Cas expression increases in response to a phage infection, but the mechanisms of induction are largely unknown, and it is unclear whether induction occurs strongly and quickly enough to benefit the bacterial host. In S. pyogenes, Cas9 is both an immune effector and auto-repressor of CRISPR-Cas expression. Here, we show that phage-encoded anti-CRISPR proteins relieve Cas9 auto-repression and trigger a rapid increase in CRISPR-Cas levels during a single phage infective cycle. As a result, fewer cells succumb to lysis, leading to a striking survival benefit after multiple rounds of infection. CRISPR-Cas induction also reduces lysogeny, thereby limiting a route for horizontal gene transfer. Altogether, we show that Cas9 is not only a CRISPR-Cas effector and repressor but also a phage sensor that can mount an anti-anti-CRISPR transcriptional response.


Asunto(s)
Bacteriófagos , Bacteriófagos/fisiología , Sistemas CRISPR-Cas/genética , Bacterias/metabolismo , Lisogenia , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
PLoS Biol ; 20(11): e3001790, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36327213

RESUMEN

Gene transfer agents (GTAs) are prophage-like entities found in many bacterial genomes that cannot propagate themselves and instead package approximately 5 to 15 kbp fragments of the host genome that can then be transferred to related recipient cells. Although suggested to facilitate horizontal gene transfer (HGT) in the wild, no clear physiological role for GTAs has been elucidated. Here, we demonstrate that the α-proteobacterium Caulobacter crescentus produces bona fide GTAs. The production of Caulobacter GTAs is tightly regulated by a newly identified transcription factor, RogA, that represses gafYZ, the direct activators of GTA synthesis. Cells lacking rogA or expressing gafYZ produce GTAs harboring approximately 8.3 kbp fragment of the genome that can, after cell lysis, be transferred into recipient cells. Notably, we find that GTAs promote the survival of Caulobacter in stationary phase and following DNA damage by providing recipient cells a template for homologous recombination-based repair. This function may be broadly conserved in other GTA-producing organisms and explain the prevalence of this unusual HGT mechanism.


Asunto(s)
Caulobacter crescentus , Profagos , Profagos/genética , Profagos/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Transferencia de Gen Horizontal/genética , Genoma Bacteriano , Reparación del ADN/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
4.
Mol Cell ; 82(5): 907-919.e7, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35134339

RESUMEN

Prokaryotic organisms have developed multiple defense systems against phages; however, little is known about whether and how these interact with each other. Here, we studied the connection between two of the most prominent prokaryotic immune systems: restriction-modification and CRISPR. While both systems employ enzymes that cleave a specific DNA sequence of the invader, CRISPR nucleases are programmed with phage-derived spacer sequences, which are integrated into the CRISPR locus upon infection. We found that restriction endonucleases provide a short-term defense, which is rapidly overcome through methylation of the phage genome. In a small fraction of the cells, however, restriction results in the acquisition of spacer sequences from the cleavage site, which mediates a robust type II-A CRISPR-Cas immune response against the methylated phage. This mechanism is reminiscent of eukaryotic immunity in which the innate response offers a first temporary line of defense and also activates a second and more robust adaptive response.


Asunto(s)
Bacteriófagos , ADN Viral , Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , Enzimas de Restricción del ADN/genética , ADN Viral/genética , Endonucleasas/genética , Inmunidad
5.
Cell Host Microbe ; 29(10): 1482-1495.e12, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34582782

RESUMEN

CRISPR-Cas systems provide immunity to bacteria by programing Cas nucleases with RNA guides that recognize and cleave infecting viral genomes. Bacteria and their viruses each encode recombination systems that could repair the cleaved viral DNA. However, it is unknown whether and how these systems can affect CRISPR immunity. Bacteriophage λ uses the Red system (gam-exo-bet) to promote recombination between related phages. Here, we show that λ Red also mediates evasion of CRISPR-Cas targeting. Gam inhibits the host E. coli RecBCD recombination system, allowing recombination and repair of the cleaved DNA by phage Exo-Beta, which promotes the generation of mutations within the CRISPR target sequence. Red recombination is strikingly more efficient than the host's RecBCD-RecA in the production of large numbers of phages that escape CRISPR targeting. These results reveal a role for Red-like systems in the protection of bacteriophages against sequence-specific nucleases, which may facilitate their spread across viral genomes.


Asunto(s)
Bacteriófago lambda/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Mutación , Recombinación Genética , Bacteriófago lambda/inmunología , Bacteriófago lambda/fisiología , Escherichia coli/inmunología , Escherichia coli/virología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Exodesoxirribonucleasa V/genética , Exodesoxirribonucleasa V/inmunología , Interacciones Huésped-Patógeno , Proteínas Virales/genética , Proteínas Virales/inmunología
6.
Cell ; 184(3): 675-688.e19, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421369

RESUMEN

CRISPR-Cas systems provide prokaryotes with acquired immunity against viruses and plasmids, but how these systems are regulated to prevent autoimmunity is poorly understood. Here, we show that in the S. pyogenes CRISPR-Cas system, a long-form transactivating CRISPR RNA (tracr-L) folds into a natural single guide that directs Cas9 to transcriptionally repress its own promoter (Pcas). Further, we demonstrate that Pcas serves as a critical regulatory node. De-repression causes a dramatic 3,000-fold increase in immunization rates against viruses; however, heightened immunity comes at the cost of increased autoimmune toxicity. Using bioinformatic analyses, we provide evidence that tracrRNA-mediated autoregulation is widespread in type II-A CRISPR-Cas systems. Collectively, we unveil a new paradigm for the intrinsic regulation of CRISPR-Cas systems by natural single guides, which may facilitate the frequent horizontal transfer of these systems into new hosts that have not yet evolved their own regulatory strategies.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Expresión Génica , Homeostasis/genética , ARN Guía de Kinetoplastida/genética , Autoinmunidad/genética , Secuencia de Bases , Secuencia Conservada , Regulación hacia Abajo/genética , Modelos Genéticos , Mutación/genética , Operón/genética , Regiones Promotoras Genéticas/genética , Streptococcus pyogenes/genética , Estrés Fisiológico/genética , Transcripción Genética , Activación Transcripcional/genética
7.
Nat Commun ; 9(1): 61, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29302058

RESUMEN

CRISPR-Cas systems offer an immune mechanism through which prokaryotic hosts can acquire heritable resistance to genetic parasites, including temperate phages. Co-transcriptional DNA and RNA targeting by type III-A CRISPR-Cas systems restricts temperate phage lytic infections while allowing lysogenic infections to be tolerated under conditions where the prophage targets are transcriptionally repressed. However, long-term consequences of this phenomenon have not been explored. Here we show that maintenance of conditionally tolerant type III-A systems can produce fitness costs within populations of Staphylococcus aureus lysogens. The fitness costs depend on the activity of prophage-internal promoters and type III-A Cas nucleases implicated in targeting, can be more severe in double lysogens, and are alleviated by spacer-target mismatches which do not abrogate immunity during the lytic cycle. These findings suggest that persistence of type III-A systems that target endogenous prophages could be enhanced by spacer-target mismatches, particularly among populations that are prone to polylysogenization.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas/genética , Lisogenia/genética , Profagos , Staphylococcus aureus/genética , Staphylococcus epidermidis/genética , Virosis/genética
8.
Nature ; 544(7648): 101-104, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28355179

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems provide protection against viral and plasmid infection by capturing short DNA sequences from these invaders and integrating them into the CRISPR locus of the prokaryotic host. These sequences, known as spacers, are transcribed into short CRISPR RNA guides that specify the cleavage site of Cas nucleases in the genome of the invader. It is not known when spacer sequences are acquired during viral infection. Here, to investigate this, we tracked spacer acquisition in Staphylococcus aureus cells harbouring a type II CRISPR-Cas9 system after infection with the staphylococcal bacteriophage ϕ12. We found that new spacers were acquired immediately after infection preferentially from the cos site, the viral free DNA end that is first injected into the cell. Analysis of spacer acquisition after infection with mutant phages demonstrated that most spacers are acquired during DNA injection, but not during other stages of the viral cycle that produce free DNA ends, such as DNA replication or packaging. Finally, we showed that spacers acquired from early-injected genomic regions, which direct Cas9 cleavage of the viral DNA immediately after infection, provide better immunity than spacers acquired from late-injected regions. Our results reveal that CRISPR-Cas systems exploit the phage life cycle to generate a pattern of spacer acquisition that ensures a successful CRISPR immune response.


Asunto(s)
Fagos de Bacillus/genética , Fagos de Bacillus/inmunología , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Viral/genética , Staphylococcus aureus/inmunología , Staphylococcus aureus/virología , Sitios de Ligazón Microbiológica/genética , Fagos de Bacillus/crecimiento & desarrollo , Fagos de Bacillus/fisiología , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ADN Viral/inmunología , ADN Viral/metabolismo , Mutación , Staphylococcus aureus/genética , Factores de Tiempo , Transfección
9.
Nature ; 519(7542): 199-202, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25707807

RESUMEN

Clustered regularly interspaced short palindromic repeat (CRISPR) loci and their associated (Cas) proteins provide adaptive immunity against viral infection in prokaryotes. Upon infection, short phage sequences known as spacers integrate between CRISPR repeats and are transcribed into small RNA molecules that guide the Cas9 nuclease to the viral targets (protospacers). Streptococcus pyogenes Cas9 cleavage of the viral genome requires the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) sequence immediately downstream of the viral target. It is not known whether and how viral sequences flanked by the correct PAM are chosen as new spacers. Here we show that Cas9 selects functional spacers by recognizing their PAM during spacer acquisition. The replacement of cas9 with alleles that lack the PAM recognition motif or recognize an NGGNG PAM eliminated or changed PAM specificity during spacer acquisition, respectively. Cas9 associates with other proteins of the acquisition machinery (Cas1, Cas2 and Csn2), presumably to provide PAM-specificity to this process. These results establish a new function for Cas9 in the genesis of prokaryotic immunological memory.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Viral/genética , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/genética , Secuencia de Bases , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ADN Viral/inmunología , ADN Viral/metabolismo , Datos de Secuencia Molecular , Motivos de Nucleótidos , Unión Proteica , Estructura Terciaria de Proteína , Staphylococcus aureus , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/virología , Especificidad por Sustrato
10.
PLoS Biol ; 12(10): e1001977, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25350732

RESUMEN

Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/fisiología , División Celular , Daño del ADN , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/genética , Puntos de Control del Ciclo Celular , Proteínas de la Membrana/genética , Mutación Missense , Supresión Genética , Factores de Transcripción/metabolismo
11.
Genes Dev ; 25(12): 1328-43, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21685367

RESUMEN

Following DNA damage, cells typically delay cell cycle progression and inhibit cell division until their chromosomes have been repaired. The bacterial checkpoint systems responsible for these DNA damage responses are incompletely understood. Here, we show that Caulobacter crescentus responds to DNA damage by coordinately inducing an SOS regulon and inhibiting the master regulator CtrA. Included in the SOS regulon is sidA (SOS-induced inhibitor of cell division A), a membrane protein of only 29 amino acids that helps to delay cell division following DNA damage, but is dispensable in undamaged cells. SidA is sufficient, when overproduced, to block cell division. However, unlike many other regulators of bacterial cell division, SidA does not directly disrupt the assembly or stability of the cytokinetic ring protein FtsZ, nor does it affect the recruitment of other components of the cell division machinery. Instead, we provide evidence that SidA inhibits division by binding directly to FtsW to prevent the final constriction of the cytokinetic ring.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Daño del ADN/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/genética , Caulobacter crescentus/citología , División Celular , Membrana Celular/metabolismo , Proteínas de Unión al ADN , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/genética , Mutación , Peptidoglicano/metabolismo , Factores de Transcripción
13.
Dev Biol ; 328(2): 221-33, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19389361

RESUMEN

The oral-aboral (OA) axis in the sea urchin is specified by the TGFbeta family members Nodal and BMP2/4. Nodal promotes oral specification, whereas BMP2/4, despite being expressed in the oral territory, is required for aboral specification. This study explores the role of Chordin (Chd) during sea urchin embryogenesis. Chd is a secreted BMP inhibitor that plays an important role in axial and neural specification and patterning in Drosophila and vertebrate embryos. In Lytechinus variegatus embryos, Chd and BMP2/4 are functionally antagonistic. Both are expressed in overlapping domains in the oral territory prior to and during gastrulation. Perturbation shows that, surprisingly, Chd is not involved in OA axis specification. Instead, Chd is required both for normal patterning of the ciliary band at the OA boundary and for development of synaptotagmin B-positive (synB) neurons in a manner that is reciprocal with BMP2/4. Chd expression and synB-positive neural development are both downstream from p38 MAPK and Nodal, but not Goosecoid. These data are summarized in a model for synB neural development.


Asunto(s)
Glicoproteínas/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Neuronas/fisiología , Erizos de Mar/embriología , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo/fisiología , Proteínas Morfogenéticas Óseas/metabolismo , Embrión no Mamífero/fisiología , Datos de Secuencia Molecular , Neurogénesis/fisiología , Proteína Nodal/metabolismo , Filogenia , Erizos de Mar/fisiología , Sinaptotagminas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Science ; 313(5795): 1929-35, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-17008526

RESUMEN

To pursue a systematic approach to the discovery of functional connections among diseases, genetic perturbation, and drug action, we have created the first installment of a reference collection of gene-expression profiles from cultured human cells treated with bioactive small molecules, together with pattern-matching software to mine these data. We demonstrate that this "Connectivity Map" resource can be used to find connections among small molecules sharing a mechanism of action, chemicals and physiological processes, and diseases and drugs. These results indicate the feasibility of the approach and suggest the value of a large-scale community Connectivity Map project.


Asunto(s)
Bases de Datos Factuales , Evaluación Preclínica de Medicamentos/métodos , Perfilación de la Expresión Génica , Expresión Génica/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Línea Celular , Línea Celular Tumoral , Dexametasona/farmacología , Dexametasona/uso terapéutico , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Estrógenos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas , Humanos , Limoninas/farmacología , Obesidad/genética , Obesidad/fisiopatología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotiazinas/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatología , Sirolimus/farmacología , Sirolimus/uso terapéutico , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...