Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(23): e2310083, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38301718

RESUMEN

Liquid crystals offer a dynamic platform for developing advanced photonics and soft actuation systems due to their unique and facile tunability and reconfigurability. Achieving precise spatial patterning of the liquid crystal alignment is critical to developing electro-optical devices, programmable origami, directed colloidal assembly, and controlling active matter. Here, a simple method is demonstrated to achieve continuous 3D control of the directions of liquid crystal mesogens using a two-step photo-exposure process. In the first step, polarized light sets the orientation in the plane of confining substrates; the second step uses unpolarized light of a prescribed dose to set the out-of-plane orientation. The method enables smoothly varying orientational patterns with sub-micrometer precision. As a demonstration, the setup is used to create gradient-index lenses with parabolic refractive index profiles that remain stable without external electric fields. The lenses' focal length and sensitivity to light polarization are characterized through experimental and numerical methods. The findings pave the way for developing next-generation photonic devices and actuated materials, with potential applications in molecular self-assembly, re-configurable optics, and responsive matter.

2.
Nat Commun ; 14(1): 4114, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433767

RESUMEN

Vortical flows of rotating particles describe interactions ranging from molecular machines to atmospheric dynamics. Yet to date, direct observation of the hydrodynamic coupling between artificial micro-rotors has been restricted by the details of the chosen drive, either through synchronization (using external magnetic fields) or confinement (using optical tweezers). Here we present a new active system that illuminates the interplay of rotation and translation in free rotors. We develop a non-tweezing circularly polarized beam that simultaneously rotates hundreds of silica-coated birefringent colloids. The particles rotate asynchronously in the optical torque field while freely diffusing in the plane. We observe that neighboring particles orbit each other with an angular velocity that depends on their spins. We derive an analytical model in the Stokes limit for pairs of spheres that quantitatively explains the observed dynamics. We then find that the geometrical nature of the low Reynolds fluid flow results in a universal hydrodynamic spin-orbit coupling. Our findings are of significance for the understanding and development of far-from-equilibrium materials.

3.
Proc Natl Acad Sci U S A ; 120(27): e2300833120, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364119

RESUMEN

Disclination lines play a key role in many physical processes, from the fracture of materials to the formation of the early universe. Achieving versatile control over disclinations is key to developing novel electro-optical devices, programmable origami, directed colloidal assembly, and controlling active matter. Here, we introduce a theoretical framework to tailor three-dimensional disclination architecture in nematic liquid crystals experimentally. We produce quantitative predictions for the connectivity and shape of disclination lines found in nematics confined between two thinly spaced glass substrates with strong patterned planar anchoring. By drawing an analogy between nematic liquid crystals and magnetostatics, we find that i) disclination lines connect defects with the same topological charge on opposite surfaces and ii) disclination lines are attracted to regions of the highest twist. Using polarized light to pattern the in-plane alignment of liquid crystal molecules, we test these predictions experimentally and identify critical parameters that tune the disclination lines' curvature. We verify our predictions with computer simulations and find nondimensional parameters enabling us to match experiments and simulations at different length scales. Our work provides a powerful method to understand and practically control defect lines in nematic liquid crystals.

4.
Nat Commun ; 13(1): 184, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013335

RESUMEN

While motile bacteria display rich dynamics in dense colonies, the phoretic nature of artificial micro-swimmers restricts their activity when crowded. Here we introduce a new class of synthetic micro-swimmers that are driven solely by light. By coupling a light absorbing particle to a fluid droplet we produce a colloidal chimera that transforms optical power into propulsive thermo-capillary action. The swimmers' internal drive allows them to operate for a long duration (days) and remain active when crowded, forming a high density fluid phase. We find that above a critical concentration, swimmers form a long lived crowded state that displays internal dynamics. When passive particles are introduced, the dense swimmer phase can re-arrange to spontaneously corral the passive particles. We derive a geometrical, depletion-like condition for corralling by identifying the role the passive particles play in controlling the effective concentration of the micro-swimmers.

5.
Clin Lymphoma Myeloma Leuk ; 17(12): 825-833, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29051077

RESUMEN

INTRODUCTION: Therapeutic options for multiple myeloma (MM) are growing, yet clinical outcomes remain heterogeneous. Cytogenetic analysis and disease staging are mainstays of risk stratification, but data suggest a complex interplay between numerous abnormalities. Myeloma cell proliferation is a metric shown to predict outcomes, but available methods are not feasible in clinical practice. PATIENTS AND METHODS: Multiplex immunohistochemistry (mIHC), using multiple immunostains simultaneously, is universally available for clinical use. We tested mIHC as a method to calculate a plasma cell proliferation index (PCPI). By mIHC, marrow trephine core biopsy samples were costained for CD138, a plasma cell-specific marker, and Ki-67. Myeloma cells (CD138+) were counted as proliferating if coexpressing Ki-67. Retrospective analysis was performed on 151 newly diagnosed, treatment-naive patients divided into 2 groups on the basis of myeloma cell proliferation: low (PCPI ≤ 5%, n = 87), and high (PCPI > 5%, n = 64). RESULTS: Median overall survival (OS) was not reached versus 78.9 months (P = .0434) for the low versus high PCPI groups. Multivariate analysis showed that only high-risk cytogenetics (hazard ratio [HR] = 2.02; P = .023), International Staging System (ISS) stage > I (HR = 2.30; P = .014), and PCPI > 5% (HR = 1.70; P = .041) had independent effects on OS. Twenty-three (36%) of the 64 patients with low-risk disease (ISS stage 1, without high-risk cytogenetics) were uniquely reidentified as high risk by PCPI. CONCLUSION: PCPI is a practical method that predicts OS in newly diagnosed myeloma and facilitates broader use of MM cell proliferation for risk stratification.


Asunto(s)
Proliferación Celular , Inmunohistoquímica/métodos , Mieloma Múltiple/patología , Células Plasmáticas/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/biosíntesis , Femenino , Humanos , Estimación de Kaplan-Meier , Antígeno Ki-67/biosíntesis , Masculino , Persona de Mediana Edad , Índice Mitótico , Mieloma Múltiple/metabolismo , Células Plasmáticas/metabolismo , Estudios Retrospectivos , Factores de Riesgo , Sindecano-1/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA