Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4866, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849373

RESUMEN

Dense and aligned Collagen I fibers are associated with collective cancer invasion led by protrusive tumor cells, leader cells. In some breast tumors, a population of cancer cells (basal-like cells) maintain several epithelial characteristics and express the myoepithelial/basal cell marker Keratin 14 (K14). Emergence of leader cells and K14 expression are regarded as interconnected events triggered by Collagen I, however the underlying mechanisms remain unknown. Using breast carcinoma organoids, we show that Collagen I drives a force-dependent loop, specifically in basal-like cancer cells. The feed-forward loop is centered around the mechanotransducer Yap and independent of K14 expression. Yap promotes a transcriptional program that enhances Collagen I alignment and tension, which further activates Yap. Active Yap is detected in invading breast cancer cells in patients and required for collective invasion in 3D Collagen I and in the mammary fat pad of mice. Our work uncovers an essential function for Yap in leader cell selection during collective cancer invasion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Colágeno Tipo I , Mecanotransducción Celular , Invasividad Neoplásica , Factores de Transcripción , Proteínas Señalizadoras YAP , Animales , Femenino , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Línea Celular Tumoral , Colágeno Tipo I/metabolismo , Regulación Neoplásica de la Expresión Génica , Organoides/metabolismo , Organoides/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo
2.
Genome Res ; 34(4): 539-555, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38719469

RESUMEN

Estrogen Receptor 1 (ESR1; also known as ERα, encoded by ESR1 gene) is the main driver and prime drug target in luminal breast cancer. ESR1 chromatin binding is extensively studied in cell lines and a limited number of human tumors, using consensi of peaks shared among samples. However, little is known about inter-tumor heterogeneity of ESR1 chromatin action, along with its biological implications. Here, we use a large set of ESR1 ChIP-seq data from 70 ESR1+ breast cancers to explore inter-patient heterogeneity in ESR1 DNA binding to reveal a striking inter-tumor heterogeneity of ESR1 action. Of note, commonly shared ESR1 sites show the highest estrogen-driven enhancer activity and are most engaged in long-range chromatin interactions. In addition, the most commonly shared ESR1-occupied enhancers are enriched for breast cancer risk SNP loci. We experimentally confirm SNVs to impact chromatin binding potential for ESR1 and its pioneer factor FOXA1. Finally, in the TCGA breast cancer cohort, we can confirm these variations to associate with differences in expression for the target gene. Cumulatively, we reveal a natural hierarchy of ESR1-chromatin interactions in breast cancers within a highly heterogeneous inter-tumor ESR1 landscape, with the most common shared regions being most active and affected by germline functional risk SNPs for breast cancer development.


Asunto(s)
Neoplasias de la Mama , Cromatina , Elementos de Facilitación Genéticos , Receptor alfa de Estrógeno , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Cromatina/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Heterogeneidad Genética , Polimorfismo de Nucleótido Simple
3.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339089

RESUMEN

Patients with pathological nipple discharge (PND) often undergo local surgical procedures because standard radiologic imaging fails to identify the underlying cause. MicroRNA (MiRNA) expression analysis of nipple fluid holds potential for distinguishing between breast diseases. This study aimed to compare miRNA expression levels between nipple fluids from patients with PND to identify possible relevant miRNAs that could differentiate between intraductal papillomas and no abnormalities in the breast tissue. Nipple fluid samples from patients with PND without radiological and pathological suspicion for malignancy who underwent a ductoscopy procedure were analyzed. We used univariate and multivariate regression analyses to identify nipple fluid miRNAs differing between pathologically confirmed papillomas and breast tissue without abnormalities. A total of 27 nipple fluid samples from patients with PND were included for miRNA expression analysis. Out of the 22 miRNAs examined, only miR-145-5p was significantly differentially expressed (upregulated) in nipple fluid from patients with an intraductal papilloma compared to patients showing no breast abnormalities (OR 4.76, p = 0.046), with a diagnostic accuracy of 92%. miR-145-5p expression in nipple fluid differs for intraductal papillomas and breast tissue without abnormalities and, therefore, has potential as a diagnostic marker to signal presence of papillomas in PND patients. However, further refinement and validation in clinical trials are necessary to establish its clinical applicability.


Asunto(s)
Enfermedades de la Mama , Neoplasias de la Mama , MicroARNs , Secreción del Pezón , Papiloma Intraductal , Papiloma , Humanos , Femenino , Papiloma Intraductal/diagnóstico , Papiloma Intraductal/genética , Papiloma Intraductal/patología , Endoscopía/métodos , Secreción del Pezón/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Enfermedades de la Mama/metabolismo , Pezones/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Papiloma/diagnóstico , Papiloma/genética , Papiloma/metabolismo
4.
Front Oncol ; 13: 1233039, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125942

RESUMEN

Background: Expression of Zona Pellucida glycoprotein 3 (ZP3) in healthy tissue is restricted to the extracellular Zona Pellucida layer surrounding oocytes of ovarian follicles and to specific cells of the spermatogenic lineage. Ectopic expression of ZP3 has been observed in various types of cancer, rendering it a possible therapeutic target. Methods: To support its validity as therapeutic target, we extended the cancer related data by investigating ZP3 expression using immunohistochemistry (IHC) of tumor biopsies. We performed a ZP3 transcript specific analysis of publicly available RNA-sequencing (RNA-seq) data of cancer cell lines (CCLs) and tumor and normal tissues, and validated expression data by independent computational analysis and real-time quantitative PCR (qPCR). A correlation between the ZP3 expression level and pathological and clinical parameters was also investigated. Results: IHC data for several cancer types showed abundant ZP3 protein staining, which was confined to the cytoplasm, contradicting the extracellular protein localization in oocytes. We noticed that an alternative ZP3 RNA transcript, which we term 'ZP3-Cancer', was annotated in gene databases that lacks the genetic information encoding the N-terminal signal peptide that governs entry into the secretory pathway. This explains the intracellular localization of ZP3 in tumor cells. Analysis of publicly available RNA-seq data of 1339 cancer cell lines (CCLs), 10386 tumor tissues (The Cancer Genome Atlas) and 7481 healthy tissues (Genotype-Tissue Expression) indicated that ZP3-Cancer is the dominant ZP3 RNA transcript in tumor cells and is highly enriched in many cancer types, particularly in rectal, ovarian, colorectal, prostate, lung and breast cancer. Expression of ZP3-Cancer in tumor cells was confirmed by qPCR. Higher levels of the ZP3-Cancer transcript were associated with more aggressive tumors and worse survival of patients with various types of cancer. Conclusion: The cancer-restricted expression of ZP3-Cancer renders it an attractive tumor antigen for the development of a therapeutic cancer vaccine, particularly using mRNA expression technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...